
Simulink® Release Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Release Notes

© COPYRIGHT 2000–2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Simulink® Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “Using Release Notes” on page 3.

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Latest Version
V7.8 (R2011b)

Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V7.7 (R2011a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V7.6.1 (R2010bSP1) No No Bug Reports
Includes fixes

V7.6 (R2010b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V7.5 (R2010a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V7.4.1 (R2009bSP1) No No Bug Reports
Includes fixes

V7.4 (R2009b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V7.3 (R2009a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V7.2 (R2008b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V7.1.1 (R2008a+) No No Bug Reports
Includes fixes

V7.1 (R2008a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

1

http://www.mathworks.com/support/bugreports/?product=SL&release=R2011b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2011b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2011a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2011a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010bSP1
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010bSP1
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009bSP1
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009bSP1
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2008b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2008b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2008a

Simulink® Release Notes

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

V7.0.1 (R2007b+) No No Bug Reports
Includes fixes

V7.0 (R2007b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V6.6.1 (R2007a+) No No Bug Reports
Includes fixes

V6.6 (R2007a) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V6.5 (R2006b) Yes
Details

Yes
Summary

Bug Reports
Includes fixes

V6.4.1 (R2006a+) No No Bug Reports

V6.4 (R2006a) Yes
Details

Yes
Summary

Bug Reports

V6.3 (R14SP3) Yes
Details

Yes
Summary

Bug Reports

V6.2 (R14SP2) Yes
Details

Yes
Summary

Bug Reports

V6.1 (R14SP1) Yes
Details

Yes
Summary

Fixed Bugs

V6.0 (R14) Yes
Details

Yes
Summary

Fixed Bugs

V5.1 (R13SP1) Yes
Details

No Fixed Bugs

V5.0.1 (R13.0.1) No Yes
Summary

Fixed Bugs

V5.0 (R13) Yes
Details

Yes
Summary

Fixed Bugs

2

http://www.mathworks.com/support/bugreports/?product=SL&release=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a+
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a+
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a
http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP3
http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP2
../../../bugfixes_13SP1.html#Simulink
../../../bugfixes_13plus.html#Simulink
../../../bugfixes_13.html#Simulink

Summary by Version

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

V4.1 (R12+) Yes
Details

Yes
Summary

Fixed Bugs

V4.0 (R12) Yes
Details

Yes
Summary

No

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

Review the release notes for other MathWorks® products required for this
product (for example, MATLAB® or Simulink®). Determine if enhancements,
bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one,
review the current release notes and all interim versions. For example, when
you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What Is in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the
impact.

3

Simulink® Release Notes

Compatibility issues reported after the product release appear under Bug
Reports at the MathWorks Web site. Bug fixes can sometimes result
in incompatibilities, so review the fixed bugs in Bug Reports for any
compatibility impact.

Fixed Bugs and Known Problems

MathWorks offers a user-searchable Bug Reports database so you can view
Bug Reports. The development team updates this database at release time
and as more information becomes available. Bug Reports include provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

Documentation on the MathWorks Web Site
Related documentation is available on mathworks.com for the latest release
and for previous releases:

• Latest product documentation

• Archived documentation

4

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/help/
http://www.mathworks.com/help/doc-archives.html

Version 7.8 (R2011b) Simulink® Software

Version 7.8 (R2011b) Simulink Software
This table summarizes what’s new in V7.8 (R2011b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 5

• “Component-Based Modeling” on page 6

• “MATLAB Function Blocks” on page 10

• “Simulink Data Management” on page 10

• “Simulink File Management” on page 16

• “Simulink Signal Management” on page 17

• “Block Enhancements” on page 21

• “User Interface Enhancements” on page 27

• “New Modeling Guidelines” on page 30

Simulation Performance

Accelerator Mode Now Supports Algebraic Loops
The Accelerator mode now works with models that contain algebraic loops. In
previous releases, using Accelerator mode for models that contained algebraic
loops returned error messages.

5

http://www.mathworks.com/support/bugreports/?product=SL&release=R2011b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2011b

Simulink® Release Notes

Component-Based Modeling

For Each Subsystem Support for Continuous Dynamics
For Each Subsystem blocks support continuous dynamics. This feature
simplifies modeling a system of identical plant models.

The continuous dynamics support includes:

• Non-trigger sample time, including multi-rate and multitasking

• Continuous states

• Algebraic loops

• Blocks in the SimDriveline™, SimElectronics®, and SimHydraulics®

products

To see an example using continuous dynamics with a For Each Subsystem
block, run the sldemo_metro_foreach demo.

Enable Port as an Input to a Root-Level Model
You can add an Enable port to the root level of a model. The referenced model
can also use a Trigger port.

Using a root-level Enable port takes advantage of model referencing benefits,
without your having to do either of these extra steps:

• Put all blocks in an enabled subsystem into a referenced model

• Put the entire enabled subsystem in a referenced model

Compatibility Considerations. When you add an enable port to the
root-level of a model, if you use the File > Save As option to specify a
release before R2011b, then Simulink replaces the enable port with an empty
subsystem.

Finder Option for Looking Inside Referenced Models
The Finder tool has a new Look inside referenced models option that
allows you to search within a model reference hierarchy.

6

Version 7.8 (R2011b) Simulink® Software

For details, see “Specifying Kinds of Systems To Search”.

Improved Detection for Rebuilding Model Reference Targets
To determine when to rebuild model reference simulation and Simulink®

Coder™ targets, Simulink uses structural checksums of file contents. The use
of checksums provides more accurate detection of file changes that require a
rebuild. Checksum checking is particularly valuable in environments that
store models in content management systems.

For details, see “Rebuild”.

Model Reference Target Generation Closes Unneeded Libraries
When building model reference simulation and Simulink Coder targets,
Simulink opens any unloaded libraries necessary for the build. Before R2011b,
Simulink did not close the libraries that it opened during the build process.

In R2011b, Simulink closes all libraries no longer needed for target generation
or simulation. Simulink leaves the following kinds of libraries open:

• Libraries used by referenced models running in Normal mode

• Libraries that were already open at the start of the target generation
process

Concurrent Execution Support
This release extends the modeling capabilities within the Simulink product to
capture and simulate the effects of deploying your design to multicore systems.
In addition, you can deploy your designs to an actual multicore system using
Simulink Coder, Embedded Coder™, and xPC Target™ software. You can:

• Create a new model configuration or extend existing configurations for
concurrent execution.

• Use Model blocks to define potential opportunities for concurrency in your
design.

• Easily set up and configure concurrent on-target tasks using a task editing
interface.

7

Simulink® Release Notes

• Use either the GUI or command-line APIs to iteratively map design
partitions (based on Model blocks) to tasks to find optimal concurrent
execution scenarios.

• Generate code that leverages threading APIs for Windows®, Linux®,
VxWorks®, and xPC Target platforms for concurrent on-target execution.

For further information, see “Configuring Models for Targets with Multicore
Processors” in the Simulink User’s Guide.

Finer Control of Library Links
Libraries and links have been enhanced with the following features:

• New option to lock links to libraries. Lockable library links enable control
of end user editing, to prevent unintentional disabling of these links. This
feature ensures robust usage of mature stable libraries.

• New check for read-only library files when you try to save, and option to
try to make library writable.

• New options in Links Tool to push or restore individual edited links, in
addition to existing option to push or restore entire hierarchies of links.

• get_param and set_param enhanced to perform loading of library links,
making programmatic manipulation of models easier and more robust.
For example, Simulink now loads links consistently if you use either
load_system or open_system before using get_param.

For details, see “Working with Library Links” in the Simulink documentation.

Mask Built-In Blocks with the Mask Editor
You can now mask built-in blocks with the Mask Editor to provide custom
icons and dialogs. In previous releases, you could mask only Subsystem,
Model, and S-Function blocks. Now, in the Mask Editor, you can choose to
promote any underlying parameter of any block to the mask. For subsystems,
you can choose to promote parameters from any child blocks. You can
associate a single mask parameter with multiple promoted parameters if they
are of the same type. Changing the value of the mask parameter also sets the
value of the associated promoted parameters.

8

Version 7.8 (R2011b) Simulink® Software

You cannot mask blocks that already have masks. For example, some
Simulink blocks, such as Ramp and Chirp Signal in the Sources library,
cannot be masked.

For details, see “Masking Blocks and Promoting Parameters” in the Simulink
documentation.

Parameter Checking in Masked Blocks
Masked blocks now prevent you entering invalid parameter values by
reporting an error when you edit the mask dialog values. Now the parameter
checking behaviour of built-in and masked blocks is unified. Both block
types check for valid parameter values when you change block dialog values.
Parameter checking at edit time prevents you saving a model with syntax
errors or invalid values.

Previously only built-in blocks reported an error at the time you enter an
invalid parameter with a syntax error, but masked blocks accepted invalid
values. In previous releases you could enter invalid values in masked block
dialogs and not see an error until you compiled the model. If the model was
not compiled you could save a model with syntax errors or other invalid
values. In R2011b, parameter checking prevents this problem.

Parameter checking applies both in the mask dialog and at the command
line for invalid parameters due to syntax errors (e.g. a blank parameter or
invalid parameter names). Parameter checking only applies in the mask
dialog for errors defined by the block. Blocks can define valid parameters,
for example, the upper limit must be higher than the lower limit, or the
frequency of a signal cannot be negative etc. This type of parameter checking
does not apply to changes you make at the command line. This allows you
to set up blocks with multiple calls to set_param, without requiring that
each step checks for errors.

Menu Options to Control Variants
You can now select or open Model Variants and Variant Subsystems with the
Edit and context menus. You can use the menus to open any variant choice or
override the block using any variant choice. These options were previously
accessible only by opening the block dialog boxes.

9

Simulink® Release Notes

For details, see “Modeling Variant Systems” in the Simulink documentation.

MATLAB Function Blocks

Simulation Supported When the Current Folder Is a UNC Path
In R2011b, you can simulate models with MATLAB Function blocks when the
current folder is a UNC path. In previous releases, simulation of those models
required that the current folder not be a UNC path.

Simulink Data Management

Default Design Minimum and Maximum are []/[], Not -inf/inf
In R2011b, the default design minimum and maximum values for
Simulink.Signal, Simulink.Parameter, Simulink.BusElement, and all
blocks are []/[] instead of the previous default -inf/inf. You can no longer
specify design minimum and maximum values of -inf/inf for blocks and
these data objects.

Compatibility Considerations. Simulink generates a warning or error
depending on the scenario that led to -inf/inf being specified as design
minimum and maximum values. The following scenarios are possible.

• When a Simulink data object is loaded from an old MAT-file or MATLAB
file in which the design maximum and minimum values of the data object
were specified as -inf/inf, Simulink generates a warning that -inf/inf
is not supported and changes the design values to the new default, namely,
[]/[].

• If you set the design minimum and maximum values for the above
mentioned data objects as -inf/inf, Simulink generates a warning that
-inf/inf is not supported and changes the design values to the new
default, namely, []/[].

• If the design minimum and maximum values evaluate to -inf/inf during
compilation or at run-time, Simulink generates an error that -inf/inf
is not supported.

10

Version 7.8 (R2011b) Simulink® Software

• If your model contains an embedded signal object with design minimum
and maximum values specified as -inf/inf, Simulink generates a warning
that -inf/inf is not supported.

Bus Elements Now Have Design Minimum and Maximum
Properties
In previous releases, you could specify design minimum and maximum for any
data, including data with a bus data type. This was done by specifying the
minimum and maximum parameters on the associated blocks or data objects.

In R2011b, you can specify design minimum and maximum for each element
of a bus object. You can use this capability to check the values of the
corresponding data elements during update diagram and simulation. With
this change, Simulink no longer checks minimum or maximum specified on
block dialogs or data objects for the whole bus.

Compatibility considerations. If you specify the minimum or maximum
for bus data on block dialogs or data objects, even if these values are scalar,
Simulink generates a warning and does not use the minimum or maximum
for checking the values of the corresponding data elements.

Compiled Design Minimum and Maximum Values Exposed
on Block Inport and Outport
In R2011b, you can view the compiled design minimum and maximum values
at a block outport from the Model Editor. See “Design Ranges”. In addition,
you can access the compiled design minimum and maximum values for a
block’s inport and outport from the command line. See “Common Block
Parameters”.

Command-Line Interface for Accessing Compiled Design Minimum
and Maximum. Use parameters CompiledPortDesignMax and
CompiledPortDesignMin to access the design minimum of port signals at
compile time. You must place the model in the compile state before querying
this parameter. For example, to obtain the compiled design minimum at the
outport of a block, use the following set of commands:

feval(gcs, [],[],[],'compile');
ports = get_param(gcb,'PortHandles');

11

Simulink® Release Notes

outportMax = get_param(ports.Outport, 'CompiledPortDesignMax')
feval(model, [],[],[],'term');

CompiledPortDesignMax and CompiledPortDesignMin return different
values depending on the type of signal.

• [] if none of the signals has compiled minimum or maximum

• scalar if all signals have the same specified compiled minimum or maximum

• cell array for Mux signals

• when the model is set to strict bus mode: structure for bus signals

• when the model is not set to strict bus mode: [] for virtual bus signals

Back-Propagated Minimum and Maximum of Portion of Wide
Signal Are Now Ignored
In previous releases, Simulink back-propagated the design minimum and
maximum of a portion of a wide signal to the source port of that portion. The
back-propagated design minimum and maximum were used in range checking.

In R2011b, Simulink generates a warning and ignores the back-propagated
design minimum and maximum of a portion of a wide signal during range
checking.

If you want to use the back-propagated design minimum and maximum for
range checking of a portion of a wide signal, insert a Signal Conversion
block with its Output parameter set to Signal copy in front of that portion.

Easier Importing of Signal Logging Data
You can load logged signal data into a model more easily in R2011b.

You can load elements of a Simulink.SimulationData.Signal object.
When you set the Configuration Parameters > Data Import/Export >
Signal logging format parameter to Dataset, the signal logging output
includes Simulink.SimulationData.Signal objects. You can then use the
Simulink.SimulationData.Dataset.getElement method to specify signal
elements for the Configuration Parameters > Data Import/Export >
Input parameter.

12

Version 7.8 (R2011b) Simulink® Software

For an example of loading logged signal data into a model, open the
sldemo_mdlref_bus demo. For more information, see “Importing Signal
Logging Data”.

Partial Specification of External Input Data
You can load external data for a subset of root-level Inport ports, without
having to create data structures for the ports for which you want to use
ground values.

Using the Configuration Parameters > Data Import/Export > Input
parameter, in the comma-separated list, enter an empty matrix to specify
ground values for a port.

Using an empty matrix for ports for which you want to use ground values
simplifies the specification of external data to input. Also, you can use an
empty matrix for an array of buses signal, which you cannot load into a
root-level Inport block.

Command-Line Interface for Signal Logging
You can now use the MATLAB command line to perform the same signal
logging tasks that you can perform with the Signal Logging Selector tool.

To configure signal logging from the command line, use methods for the
following classes:

Simulink.SimulationData Class Signal Logging Configuration Component

ModelLoggingInfo Signals to log for a given simulation. Use to override the
logging settings stored within a given model or referenced
model.

SignalLoggingInfo Logging settings for a single signal within a model.

LoggingInfo Collection of signal logging properties. Use to change
logging settings, such as decimation, for a signal.

For more information, see “Command-Line Interface for Overriding Signal
Logging Settings”.

13

Simulink® Release Notes

Access to the Data Import/Export Pane from the Signal
Logging Selector
The Signal Logging Selector toolbar includes a button () to open the
Configuration Parameters > Data Import/Export pane. Use the Data
Import/Export pane to configure the export of output signal and state data
to the MATLAB® workspace during simulation.

Inexact Property Names for User-Defined Data Objects Will
Not Be Supported in a Future Release
In previous releases, you could access a property of a user-defined data
object using an inexact property name. For example, after creating a
Simulink.Parameter data object

a = Simulink.Parameter;

you could set the property Value of the data object by using the following
command.

a.v = 5;

In R2011b, Simulink generates a warning if you access a property of a
user-defined data object using an inexact property name. While Simulink
accesses the property using the inexact match, support for this type of
matching will be removed in a future release.

Based on the example above, set the Value of the data object using the
following command instead.

a.Value = 5;

Alias Types No Longer Supported with the slDataTypeAndScale
Function
Simulink no longer supports calls to slDataTypeAndScale when:

• The first argument is a Simulink.AliasType object

• The first argument is a Simulink.NumericType object with property
IsAlias set to true

14

Version 7.8 (R2011b) Simulink® Software

Compatibility Considerations. If your model calls the internal function
slDataTypeAndScale, you might encounter a compilation error for this
model even though it previously compiled successfully. In this case, follow
the advice of the error message to update your model to remove the call to
slDataTypeAndScale.

Simulink.StructType Objects Will Not Be Supported in a Future
Release
In a future release, support for Simulink.StructType objects will be removed.
Use structured parameters or arrays of buses instead.

Old Block-specific Data Type Parameters No Longer Supported
In R2011b, Simulink generates a warning if you try to access any of
these old block-specific data type parameters: DataType, DataTypeMode,
DataTypeScalingMode, and Scaling. In a future release, support for these
data type parameters will be removed. Use DataTypeStr instead.

Simulink.Signal and Simulink.Parameter Will Not Accept Input
Arguments
Simulink generates an error if you pass an input argument to the classes
Simulink.Signal and Simulink.Parameter.

Compatibility Considerations. Simulink.Signal and
Simulink.Parameter classes accepted input arguments in
previous versions. However, the arguments were ignored for both classes.

Data Import/Export Pane Changes
The following parameters of the Configuration Parameters >
Import/Export pane have changed to improve their usability.

15

Simulink® Release Notes

Pre-R2011b Parameter Name Changed R2011b Parameter
Name

Signal Logging Selector Configure Signals to Log

Return as single object Save simulation output as single
object

Inspect signal logs when
simulation is paused/stopped

Record and inspect simulation
output

Simulation Data Inspector Tool Replaces Time Series Tool
The Simulation Data Inspector is now the default browser for logged
simulation results. Use the Simulation Data Inspector for viewing all
Simulink logged data results, including as a replacement for the Time Series
tool.

Compatibility Consideration. In R2011b, the Time Series tool (tstool) no
longer supports Simulink data results.

Simulink File Management

Project Management
Organise large modelling projects with new Simulink Projects. Find all your
required files, manage and share files, settings, and user-defined tasks, and
interact with source control.

Projects can promote more efficient team work and local productivity by
helping you:

• Find all the files that belong with your project

• Share projects using integration with external source control tool
Subversion

• View and label modified files for peer review workflows

• Create standard ways to initialize and shutdown a project

• Create, store and easily access common operations

16

Version 7.8 (R2011b) Simulink® Software

You can use projects to manage:

• Your design (.mdl, .m, .mat, and other files, source code for S-functions,
data)

• The results or artifacts (simulation results, generated code, logfiles from
code generation, reports).

• A set of user-defined actions to use with your project (e.g., run setup code;
open models, simulate; build; run shutdown code).

• Change sets of modified files for review and interaction with source control
(such as check out, compare revisions, tag or label, and check in)

For more information and a demo project to try, see “Managing Projects”.

Simulink Signal Management

Signal Conversion Block Enhancements
The Output parameter of the Signal Conversion block now has a Signal
copy option that replaces the pre-R2011b Contiguous copy and Bus copy
options. The Signal copy option handles both non-bus and bus input signals,
so that you do not need to update the setting if the input signal changes from
a non-bus to a bus signal, or from a bus to a non-bus signal.

Also, setting the Output parameter to Nonvirtual bus enables the Data
type parameter. You can use the Data type parameter to specify a
Simulink.Bus object as the output data type for the Signal Conversion block.
Using a bus object:

• Eliminates the need to use a Simulink.Bus object as the data type of an
upstream Bus Creator block.

• Enables you to pass a virtual bus signal from a Bus Selector block and
then create a nonvirtual bus signal.

Compatibility Considerations. The Virtual bus and Nonvirtual bus
options for the Output parameter continue to work as they did in previous
releases.

17

Simulink® Release Notes

For models created in a release before R2011b, two compatibility issues can
occur. Both of the compatibility issues occur when the Signal Conversion block
a virtual bus as its input and has its Output parameter set to Contiguous
copy.

The first compatibility issue occurs if the output of the Signal Conversion
block has a Simulink.Signal object associated with it.

• Prior to R2011b, Simulink automatically performed a bus-to-vector
conversion and did not report an error.

• If you open the pre-R2011b model in R2011b, then Simulink converts the
Contiguous copy option setting to Signal copy and does not convert the
bus signal to a vector. Because you cannot associate a Simulink.Signal
object with a virtual bus signal, Simulink reports an error.

The second compatibility issue occurs if a virtual bus signal from a Signal
Conversion block that has its Output parameter set to Contiguous copy is
input to a Bus Creator block that has a Simulink.Bus object as its output
data type.

• Prior to R2011b, Simulink considered the virtual bus signal to be a vector
(as in the first compatibility issue), and did not report an error.

• If you open the model in R2011b, Simulink considers the virtual bus signal
to be a bus signal. That bus signal and the bus object associated with Bus
Creator block are inconsistent, so Simulink reports an error.

To avoid each of these compatibility issues, insert a Bus to Vector block at the
input of the Signal Conversion block.

Environment Controller Block Support for Non-Bus Signals
You can use a non-bus signal as an input to the Environment Controller
block, even if you set the Configuration Parameters > Diagnostics >
Connectivity > Non-bus signals treated as bus signals diagnostic to
error.

18

Version 7.8 (R2011b) Simulink® Software

Sample Time Propagation Changes
The way that Simulink software propagates sample time has been improved
for models with the Optimization > Signals and Parameters > Inline
parameters check box cleared (off). This change:

• Reduces the difference in sample time propagation results between when
Inline parameters is off and on.

• Improves the performance of your model.

Compatibility Considerations. This change is beneficial to the performance
of your model. Not all models are affected by the sample time propagation
change. To determine if your model is affected, see Sample Time Propagation
and Inline Parameters Incompatibility. That page provides guidelines,
including information about a script, to help you evaluate your models.

To do this without the script,

• If Inline parameters is on for your model, your model is not affected
by this change.

• If Inline parameters is off in your model, in R2011a or earlier, use the
following procedure for each block in your model:

1 With Inline parameters off for your model, select Edit > Update
Diagram.

2 Use get_param to collect the CompiledSampleTime value of the block.

3 Turn Inline parameters on for your model.

4 Update the diagram again.

5 Use get_param to collect the CompiledSampleTime value of the block.

6 Compare the results from steps 2 and 5. If they are different, and the
result from step 5 is not inf, your model might be affected. To determine
for certain if your model is affected, perform steps 1 and 2 in R2011b and
compare the results with those of steps 1 and 2 from R2011a or earlier.

If you prefer the sample time propagation results from R2011a and earlier
with Inline parameters off, you can ensure the desired sample times by
manually specifying them on the affected block. If the block does not have a

19

http://www.mathworks.com/support/solutions/en/data/1-EQ5TQL
http://www.mathworks.com/support/solutions/en/data/1-EQ5TQL

Simulink® Release Notes

sample time parameter, use the Signal Specification block to specify sample
times on the input or output signal.

Frame-Based Processing
In signal processing applications, you often need to process sequential
samples of data at once as a group, rather than one sample at a time.
Simulink documentation refers to the former as frame-based processing, and
to the latter as sample-based processing. A frame is a collection of samples
of data, sequential in time.

Historically, Simulink-family products that can perform frame-based
processing propagate frame-based signals throughout a model. The frame
status is an attribute of the signals in a model, just as data type and
dimensions are attributes of a signal. The Simulink engine propagates the
frame attribute of a signal by means of a frame bit, which can either be on or
off. When the frame bit is on, Simulink interprets the signal as frame based
and displays it as a double line, rather than the single line sample-based
signal.

Beginning in R2010b, MathWorks started to significantly change the handling
of frame-based processing. In the future, frame status will no longer be a
signal attribute. Instead, individual blocks will control whether they treat
inputs as frames of data or as samples of data. To learn how a particular
block handles its input, you can refer to the block reference page.

To make the transition to the new paradigm of frame-based processing, the
following Simulink blocks have a new Input processing parameter:

• Delay

• Detect Change

• Detect Decrease

• Detect Fall Negative

• Detect Fall Nonpositive

• Detect Increase

• Detect Rise Nonnegative

• Detect Rise Positive

20

Version 7.8 (R2011b) Simulink® Software

• Difference

• Discrete Derivative

• Transfer Fcn Real Zero

• Unit Delay

You can specify three options with the Input processing parameter:

• Elements as channels (sample-based)

• Columns as channels (frame-based)

• Inherited

For more information about R2011b changes relating to frame-based
processing, in the DSP System Toolbox™ release notes, see “Frame-Based
Processing”.

Compatibility Considerations. When you choose the Inherited option
for the Input processing parameter and the input signal is frame-based,
Simulink® will generate a warning or error in future releases.

Block Enhancements

New Delay Block That Upgrades the Integer Delay Block
In R2011b, the new Delay block in the Discrete library supports:

• Variable delay length

• Specification of initial condition from input port

• Reset of the state to the initial condition using an external reset signal

• State storage

• Use of a circular buffer instead of an array buffer for state storage

21

Simulink® Release Notes

When you open models created in previous releases, the new Delay block
replaces each instance of the Integer Delay block, which no longer appears
in the Discrete library. The Delay block is an upgrade of the Integer Delay
block. Every parameter from the Integer Delay block maps directly to a
parameter in the Delay block.

22

Version 7.8 (R2011b) Simulink® Software

Compatibility Considerations. The following incompatibilities might affect
simulation of pre-R2011b models that use the Integer Delay block:

Source of
Incompatibility

Behavior in the
Integer Delay
Block

Behavior in the
Delay Block

Rationale How to Avoid
an Error

Initial
condition for
input signals
of N-by-1
or 1-by-N
dimensions
and
sample-based
processing

Suppose that
delay length is
D. For Initial
condition, the
Integer Delay
block supports
signal dimensions
of D-by-N and
N-by-D.

For Initial
condition, the
Delay block
supports signal
dimensions of
N-by-1-by-D or
1-by-N-by-D.
Using any other
format causes
an error during
simulation.

The Delay
block prevents
misinterpretation
of the dimensions
for Initial
condition by
accepting only one
format for signal
dimensions.

Verify that
Initial
condition uses
N-by-1-by-D or
1-by-N-by-D
for the format
of signal
dimensions.

Initial
condition for
input signals
of M-by-N
dimensions
and
sample-based
processing

Suppose that the
delay length is
D. For Initial
condition, the
Integer Delay
block supports
signal dimensions
of D-by-M-by-N,
M-by-N-by-D, and
M-by-D-by-N.

For Initial
condition, the
Delay block
supports signal
dimensions of
M-by-N-by-D.
Using any other
format causes
an error during
simulation.

The Delay
block prevents
misinterpretation
of the dimensions
for Initial
condition by
accepting only one
format for signal
dimensions.

Verify that
Initial
condition uses
M-by-N-by-D
for the format
of signal
dimensions.

23

Simulink® Release Notes

Source of
Incompatibility

Behavior in the
Integer Delay
Block

Behavior in the
Delay Block

Rationale How to Avoid
an Error

Sample time For Sample
time, the Integer
Delay block
supports 0. In
this case, the
block output
has continuous
sample time, but
fixed in minor
time step.

Setting Sample
time to 0
for the Delay
block causes
an error during
simulation.

Because the
Delay block
belongs to
the Discrete
library, it should
not support
continuous
sample time.

Use a discrete
sample time, or
set Sample time
to –1 to inherit
the sample time.

Rate transition
usage

The Integer Delay
block handles
rate transitions
for sample- and
frame-based
signals.

The Delay block
handles rate
transitions only
for sample-based
signals. For
frame-based
signals,
simulation stops
due to an error.

This usage of the
Delay block is not
recommended.

Do not use the
Delay block for
rate transitions
with frame-based
signals.

Sqrt and Reciprocal Sqrt Blocks Support Explicit Specification
of Intermediate Data Type
In R2011b, both the Sqrt and Reciprocal Sqrt blocks enable specifying the
data type for intermediate results. In previous releases, specifying this data
type was available for the Reciprocal Sqrt block, but not the Sqrt block.

24

Version 7.8 (R2011b) Simulink® Software

The Reciprocal Sqrt block now provides additional options for specifying the
data type for intermediate results:

This enhancement enables explicit specification of the data type. In previous
releases, specification of this data type was limited to inheritance rules.

For a summary of data type configurations that are valid (input, output, and
intermediate results), refer to the block reference page.

Discrete Zero-Pole Block Supports Single-Precision Inputs and
Outputs
The Discrete Zero-Pole block now accepts and outputs signals of single data
type.

25

Simulink® Release Notes

n-D Lookup Table Block Supports Tunable Table Size
The n-D Lookup Table block provides new parameters for specifying a tunable
table size in the generated code.

This enhancement enables you to change the size and values of your lookup
table and breakpoint data without regenerating or recompiling the code.

26

Version 7.8 (R2011b) Simulink® Software

Boolean Output Data Type Support for Logic Blocks
The following blocks now enable specification of Output data type, which
can be uint8 or boolean:

• Detect Change

• Detect Decrease

• Detect Fall Negative

• Detect Fall Nonpositive

• Detect Increase

• Detect Rise Nonnegative

• Detect Rise Positive

This enhancement enables you to specify the output data type to be boolean.
In previous releases, the blocks always used uint8 for the output data type.

Derivative Block Parameter Change
The block Linearization Time Constant s/(Ns + 1) parameter has changed
to Coefficient c in the transfer function approximation s/(c.s + 1)
used for linearization. Correspondingly, the command-line parameter has
changed from LinearizePole to CoefficientInTFapproximation.

User Interface Enhancements

Model Explorer: First Two Columns in Contents Pane Remain
Visible
In the object property table, the behavior of the first two columns (the object
icon and the Name property) has changed. These columns now remain visible,
regardless of how far you scroll to the right. For an example that illustrates
this feature, see “Horizontal Scrolling in the Object Property Table”.

Model Explorer: Subsystem Code View Added
Model Explorer provides an additional Column View option: Subsystem
Code. The Subsystem Code view displays Subsystem block code generation

27

Simulink® Release Notes

properties. For details about views, see “The Model Explorer: Controlling
Contents Using Views”.

Model Explorer: New Context Menu Options for Model
Configurations
R2011b provides new context menu options for a model in the Model Hierarchy
pane. A new menu option, Configuration, organizes previous and new model
configuration operations. To view these configuration options, in the Model
Hierarchy pane, right-click a model node and select Configuration. The
following table describes the available configuration options.

To... Select...

Load an existing configuration set to
the model

Import

Save the model’s active configuration
set to a:
• .m file (as MATLAB function or
script) or

• .mat file (Simulink.ConfigSet
object)

Export Active Configuration Set

Attach a new configuration set to the
model

Add Configuration

Create a configuration reference and
attach it to the model

Add Configuration Reference

Create a concurrent execution
configuration set

Add Configuration for
Concurrent Execution

Convert the model’s active
configuration set to a configuration
reference, which then becomes active
for the model

Convert Active Configuration to
Reference

Two new context menu options are available for a configuration set node
under a model node in the Model Hierarchy pane.

28

Version 7.8 (R2011b) Simulink® Software

To... Use...

Convert an active configuration set
to a configuration reference

Convert to Configuration
Reference (only enabled for active
configuration sets)

Convert a configuration set to a
concurrent execution configuration
set

Convert to Configuration for
Concurrent Execution

In R2011b, if a model has an active configuration reference, you can create a
copy of the configuration reference for each referenced model. To perform this
operation, in the Model Hierarchy pane, right-click the active configuration
reference node and select Propagate to Referenced Models.

For more information on model configurations, see “Managing Model
Configurations”.

Simulation Data Inspector Enhancements

Command-Line Interface. The Simulation Data Inspector command-line
interface is now available to view and compare signal data, and compare two
simulation runs of data. For more information, see “Inspect and Compare
Signal Data Using the Command-Line Interface”.

Report Generation. Using the Simulation Data Inspector tool or the
command-line interface, you can now generate a report of a Simulation Data
Inspector session. To generate a report using the GUI, see “Create Simulation
Data Inspector Report”. To generate a report using the command-line
interface, see the Simulink.sdi.report function.

Support of Scope, To File, and To Workspace Blocks. The Simulation
Data Inspector now supports output from the following blocks:

• Scope (Structure with time and Array format)

• To File (Timeseries format)

• To Workspace (Structure with time format)

29

Simulink® Release Notes

Conversion of Error and Warning Message Identifiers
For R2011b, error and warning message identifiers have changed in Simulink.

Compatibility Considerations. If you have scripts or functions that use
message identifiers that changed, you must update the code to use the new
identifiers. Typically, message identifiers are used to turn off specific warning
messages, or in code that uses a try/catch statement and performs an action
based on a specific error identifier.

For example, the MATLAB:eigs:NonPosIntSize identifier has
changed to MATLAB:eigs:RoundNonIntSize. If your code checks
for MATLAB:eigs:NonPosIntSize, you must update it to check for
MATLAB:eigs:RoundNonIntSize instead.

To determine the identifier for a warning, run the following command just
after you see the warning in the MATLAB Command Window.

[MSG,MSGID] = lastwarn;

This command saves the message identifier to the variable MSGID.

To determine the identifier for an error, run the following command just after
you see the error in the MATLAB Command Window.

exception = MException.last;
MSGID = exception.identifier;

Note Warning messages indicate a potential issue with your code. While you
can turn off a warning, a suggested alternative is to change your code so
it runs warning-free.

New Modeling Guidelines
In R2011b, Simulink includes new Modeling Guidelines.

Modeling Guidelines for High-Integrity Systems
Following are the new modeling guidelines to develop models and generate
code for high-integrity systems:

30

Version 7.8 (R2011b) Simulink® Software

• “hisl_0201: Define reserved keywords to improve MISRA-C:2004
compliance”

• “hisf_0211: Protect against use of unary operators in Stateflow® Charts to
improve MISRA-C:2004 compliance ”

• “hisf_0212: Data type of Stateflow for loop control variables to improve
MISRA-C: 2004 compliance ”

• “hisf_0213: Protect against divide-by-zero calculations in Stateflow charts
to improve MISRA-C: 2004 compliance”

Following are the new high-integrity modeling guidelines for configuration
parameter diagnostics:

• “hisl_0301: Configuration Parameters > Diagnostics > Compatibility”

• “hisl_0302: Configuration Parameters > Diagnostics > Data Validity >
Parameters”

• “hisl_0303: Configuration Parameters > Diagnostics > Data Validity >
Merge block”

• “hisl_0304: Configuration Parameters > Diagnostics > Data Validity >
Model Initialization”

• “hisl_0305: Configuration Parameters > Diagnostics > Data Validity >
Debugging”

• “hisl_0306: Configuration Parameters > Diagnostics > Connectivity >
Signals”

• “hisl_0307: Configuration Parameters > Diagnostics > Connectivity >
Buses”

• “hisl_0308: Configuration Parameters > Diagnostics > Connectivity >
Function calls”

• “hisl_0309: Configuration Parameters > Diagnostics > Type Conversion”

• “hisl_0310: Configuration Parameters > Diagnostics > Model Referencing”

• “hisl_0311: Configuration Parameters > Diagnostics > Stateflow”

For more information, see “Modeling Guidelines for High-Integrity Systems”.

31

Simulink® Release Notes

Modeling Guidelines for Code Generation
Following are the new modeling guidelines for code generation:

• “cgsl_0104: Modeling global shared memory using data stores”

• “cgsl_0105: Modeling local shared memory using data stores”

For more information, see “Modeling Guidelines for Code Generation”.

32

Version 7.7 (R2011a) Simulink® Software

Version 7.7 (R2011a) Simulink Software
This table summarizes what’s new in V7.7 (R2011a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 33

• “Component-Based Modeling” on page 34

• “MATLAB Function Blocks” on page 35

• “Simulink Data Management” on page 36

• “Simulink Signal Management” on page 44

• “Block Enhancements” on page 46

• “User Interface Enhancements” on page 65

• “S-Functions” on page 68

Simulation Performance

Restore SimState in Models Created in Earlier Simulink Versions
Simulink 7.7 supports the restoring of a SimState from a MAT file saved in
a previous version of Simulink. During this operation, Simulink restores
as much of the SimState object as possible and automatically resets the
simulation start time to the stop time of the SimState object.

You can choose to receive a warning or an error by setting a new diagnostic,
SimState object from earlier release, on the Diagnostic Pane of the
Configuration Parameters dialog.

33

http://www.mathworks.com/support/bugreports/?product=SL&release=R2011a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2011a

Simulink® Release Notes

Improved Absolute Tolerance Implementation
The processing of the absolute tolerance parameter in the Solver configuration
pane, and of the absolute tolerance parameters for continuous blocks and
S-functions with continuous states, has been enhanced. As a result, these
parameters provide a more robust and consistent behavior. These error
tolerances are used by variable-step solvers to control integration error for
continuous states in a model.

A new SimStruct function ssSetStateAbsTol has been introduced to allow
for setting the absolute tolerances for the S-Function continuous states in
models using a variable-step solver. Use of ssGetAbsTol to either get or set
absolute tolerances is not recommended. Instead, use ssGetStateAbsTol and
ssSetStateAbsTol to get and set tolerances, respectively.

Component-Based Modeling

Refreshing Linked Blocks and Model Blocks
You can refresh linked blocks and Model blocks in a library or model using the
Simulink Editor. Select the Edit > Links and Model Blocks > Refresh.

Refreshing the linked blocks updates the linked blocks to reflect any changes
to the original library block. In releases before R2011a, to update linked
blocks, you had to take one of the following actions:

• Close and reopen the library that contains the linked blocks that you want
to refresh.

• Update the diagram (Edit > Links and Update Diagram or Ctrl+D).

You can update a specific Model block by right-clicking the Model block and
selecting Refresh.

Compatibility Considerations. The new menu option, Edit > Links and
Model Blocks > Refresh menu item replaces Edit > Model Blocks >
Refresh Model Blocks. Both the old and new options update Model blocks
in the same way.

34

Version 7.7 (R2011a) Simulink® Software

Enhanced Model Block Displays Variant Model Choices
The Model Variants block now displays model names for all variant choices,
making it easier to select and configure available variants.

See “Setting Up Model Variants”.

Creating a Protected Model Using the Simulink Editor
You can protect a model using the Simulink Editor. Right-click the Model
block that references the model for which you want to generate protected
model code. In the context menu, select Code Generation > Generate
Protected Model. For details, see “Creating a Protected Model”.

In earlier releases, you had to use the Simulink.ModelReference.protect
command to create a protected model.

MATLAB Function Blocks

Embedded MATLAB Function Block Renamed as MATLAB
Function Block
In R2011a, Embedded MATLAB Function blocks were renamed as MATLAB
Function blocks in Simulink models. The block also has a new look:

Compatibility Consideration. If you have scripts that refer to Embedded
MATLAB library blocks by path, you need to update the script to reflect the
new block name. For example, if your script refers to simulink/User-Defined
Functions/Embedded MATLAB Function or eml_lib/Embedded MATLAB
Function, change Embedded MATLAB Function to MATLAB Function.

Support for Buses in Data Store Memory
MATLAB Function blocks now support buses as shared data in Data Store
Memory blocks.

35

Simulink® Release Notes

Simulink Data Management

Signal Logging Selector
The Signal Logging Selector is a new centralized signal logging tool for:

• Reviewing all signals in a model hierarchy that are configured for logging
(set with the Signal Properties dialog box)

• Overriding signal logging settings for specific signals

• Controlling signal logging throughout a model reference hierarchy in a
more streamlined way than in previous releases

You can use the Signal Logging Selector with Simulink and Stateflow signals.

To open the Signal Logging Selector, in the Configuration Parameters >
Data Import/Export pane, select the Signal Logging Selector button. For
a Model block, you can right-click the block and select the Log Referenced
Signals menu item. (The Signal Logging Selector replaces the Model
Reference Signal Logging dialog box.)

See “Overriding Signal Logging Settings” and “Using the Signal Logging
Selector to View the Signal Logging Configuration”.

Dataset Format Option for Signal Logging Data
You can now select a format for signal logging data. Use the Configuration
Parameters > Data Import/Export > Signal logging format parameter
to select the format:

• ModelDataLogs — Simulink.ModelDataLogs format (default; before
R2011a, this format was the only one supported)

• Dataset— Simulink.SimulationData.Dataset format

The Dataset format:

• Uses MATLAB timeseries objects to store logged data (rather than
Simulink.Timeseries and Simulink.TsArray objects). MATLAB
timeseries objects allow you to work with logging data in MATLAB
without a Simulink license.

36

Version 7.7 (R2011a) Simulink® Software

• Supports logging multiple data values for a given time step, which can be
important for Iterator subsystem and Stateflow signal logging.

• Provides an easy-to-analyze format for logged signal data for models with
deep hierarchies, bus signals, and signals with duplicate or invalid names.

• Supports the Simulation Data Inspector.

• Avoids the limitations of the ModelDataLogs format. For example, for a
virtual bus, ModelDataLogs format logs only one of multiple signals that
share the same source block. For a description of ModelDataLogs format
limitations, see Bug Report 495436.

To convert a model that contains referenced models to use the
Dataset format throughout the model reference hierarchy, use the
Simulink.SimulationData.updateDatasetFormatLogging function.

If you have logged signal data in the ModelDataLogs format, you can use
the Simulink.ModelDataLogs.convertToDataset function to convert the
ModelDataLogs data to Dataset format.

To work with Dataset format data, you can use properties and methods of
the following classes:

• Simulink.BlockPath

• Simulink.SimulationData.BlockPath

• Simulink.SimulationData.Dataset

• Simulink.SimulationData.Signal

• Simulink.SimulationData.DataStoreMemory

For information about the signal logging format, see “Specifying the Signal
Logging Data Format”

From File Block Supports Zero-Crossing Detection
The From File block allows you to specify zero-crossing detection.

37

http://www.mathworks.com/support/bugreports/search_results?search_executed=1&keyword=495436&release_filter=Exists+in&release=0&selected_products=

Simulink® Release Notes

Signal Builder Block Now Supports Virtual Bus Output
You can now define the type of output to use on the Signal Builder block now
outputs signals. With this release, the Signal Builder block has two options:

• Ports

Sends individual signals from the block. An output port named Signal N
appears for each signal N. This option is the default setting. In previous
releases, the block uses this type of signal output.

• Bus

Sends single, virtual, nonhierarchical bus of signals from the block. An
output port named Bus appears. This Bus option enables you to change
your model layout without having to reroute Signal Builder block signals.
You cannot use this option to create a bus of non-virtual signals.

For more information, see “Defining Signal Output” in the Simulink User’s
Guide

Signal Builder Block Now Shows the Currently Active Group
The Signal Builder block now shows the currently active group on its block
mask.

signalbuilder Function Change
The signalbuilder function has a new command, 'annotategroup'. This
command enables the display of the current group name on the Signal Builder
block mask.

Range-Checking Logic for Fixed-Point Data During Simulation
Improved
The logic that Simulink uses to check whether design minimum and
maximum values are within the specified data type range is now consistent
with the logic that it uses to calculate best-precision scaling.

• Simulink now checks both real-world values and quantized values for a
block parameter, Simulink.Parameter object, or Simulink.Signal object
against design minimum and maximum values. Prior to R2011a, Simulink

38

Version 7.7 (R2011a) Simulink® Software

checked only real-world values against design minimum and maximum
values.

• When Simulink checks the design minimum and maximum values for a
Simulink.Signal object against the data type minimum and maximum
values, it obtains the data type range in one of the following ways.

1 If the data type for a Simulink.Signal object is set, Simulink uses the
range defined in the specification of that data type

2 If the data type for a Simulink.Signal object is set to auto, Simulink
uses the range for the data type inferred from the initial value of the
signal’s fi object

Prior to R2011a, Simulink only used the data type range defined in the
specification of that data type.

• Simulink now checks the run-time parameter value of an S-function
against the design minimum and maximum values when the parameter is
updated at run-time and during compilation. Prior to R2011a, Simulink
checked run-time parameter values of an S-function against the design
minimum and maximum only at run-time.

For more information about block parameter range checking, see “Checking
Parameter Values”.

Compatibility Considerations.

• An error is generated if the quantized value of a block parameter,
Simulink.Parameter object, or Simulink.Signal object in your model
is different from the real-world value and if this difference causes the
quantized value to lie outside the design minimum and maximum range.

• An error is generated if the initial value of a Simulink.Signal object
in your model is a fi object and if this initial value is outside the range
associated with that fi object.

• An error is generated at compile time if the run-time parameter value of
an S-function in your model is outside the design minimum and maximum
range.

39

Simulink® Release Notes

Data Object Wizard Now Supports Boolean, Enumerated, and
Structured Data Types for Parameters
In this release, the Data Object Wizard is enhanced to suggest parameter
objects for variables with the following data types:

• Boolean

• Enumerations

• Structures

For information, see “Working with Data Objects” and “Data Object Wizard”.

Error Now Generated When Initialized Signal Objects Back
Propagate to Output Port of Ground Block
Prior to this release, Simulink generated an error when the output of a
Ground block was a signal object with an initial value, but did not do the same
for such signal objects back propagated to the output port of a Ground block.
As of R2011a, Simulink generates an error under both conditions.

No Longer Able to Set RTWInfo or CustomAttributes Property
of Simulink Data Objects
You can no longer set the RTWInfo or CustomAttributes property of a
Simulink data object from the MATLAB Command Window or a MATLAB
script. Attempts to set these properties generate an error.

Although you cannot set RTWInfo or CustomAttributes, you can still set
subproperties of RTWInfo and CustomAttributes.

Compatibility Considerations. Operations from the MATLAB Command
Window or a MATLAB script, which set the data object property RTWInfo or
CustomAttributes, generate an error.

For example, a MATLAB script might set these properties by copying a data
object as shown below:

a = Simulink.Parameter;
b = Simulink.Parameter;
b.RTWInfo = a.RTWInfo;

40

Version 7.7 (R2011a) Simulink® Software

b.RTWInfo.CustomAttributes = a.RTWInfo.CustomAttributes;
.
.
.

To copy a data object, use the object’s deepCopy method.

a = Simulink.Parameter;
b = a.deepCopy;
.
.
.

Global Data Stores Now Treat Vector Signals as One or Two
Dimensional
Simulink now uses the Dimensions attribute of a source signal object to
determine whether to register a global data store as a vector (1-D) or matrix
(2-D). For example, if the Dimensions attribute of a source signal object is
set to [1 N] or [N 1], Simulink registers the global data store as a matrix.
Prior to R2011a, Simulink treated all global data stores as vectors.

The following table lists possible signal object dimension settings with what
Simulink registers for a corresponding global data store:

Source
Signal Object
Dimensions

Registered for Global Data Store

1 Get dimensions from InitialValue and interpret
vectors as 1-D

N Vector with N elements

[1 N] 1xN matrix

[N 1] Nx1 matrix

41

Simulink® Release Notes

Compatibility Considerations. If you specify the dimensions of the source
signal object for a global data store as [1 N] or [N 1], Simulink now registers
the data store as a matrix. Although this change has no impact on numeric
results of simulation or execution of generated code, the change can affect
the following:

• Propagation of dimensions (for example, signals might propagate as [1 N]
or [N 1] instead of N).

• Signal and state logging

- Vectors are logged as 2D matrices – [nTimeSteps width]

- 2-D matrices are logged as 3-D matrices – [M N nTimeSteps]

No Longer Able to Use Trigger Signals Defined as Enumerations
You can no longer use trigger signals that are defined as enumerations.
A trigger signal represents an external input that initiates execution of a
triggered subsystem. Prior to R2011a, Simulink supported enumerated
trigger signals for simulation, but produced an error during code generation.
This change clarifies triggered subsystem modeling semantics by making
them consistent across simulation and code generation.

Compatibility Considerations. Use of enumerated trigger signals during
simulation now generates an error. To work around this change, compare
enumeration values, as appropriate, and apply the resulting Boolean or
integer signal value as the subsystem trigger.

Conversions of Simulink.Parameter Object Structure Field Data
to Corresponding Bus Element Type Supported for double Only
If you specify the DataType field of a Simulink.Parameter object as a bus,
you must specify Value as a numeric structure. Prior to R2011a, Simulink
would convert the data types of all fields of that structure to the data types
of corresponding bus elements. As of R2011a, Simulink converts the data
type of structure fields of type double only. If the data type of a field of the
structure does not match the data type of the corresponding bus element
and is not double, an error occurs.

42

Version 7.7 (R2011a) Simulink® Software

This change does not affect the InitialValue field of Simulink.Signal
objects. Data types of fields of a numeric structure for an initial condition
must match data types of corresponding bus elements.

Compatibility Considerations. If the data type of a field of a numeric
structure that you specify for Simulink.Parameter does not match the data
type of the corresponding bus element and is not double, an error occurs. To
correct the condition, set the data types of all fields of the structure to match
the data types of all bus elements or set them to type double.

For more information, see Simulink.Parameter.

Simulink.CustomParameter and Simulink.CustomSignal Data
Classes To Be Deprecated in a Future Release
In a future release, data classes Simulink.CustomParameter and
Simulink.CustomSignal will no longer be supported because they are
equivalent to Simulink.Parameter and Simulink.Signal.

Compatibility Considerations. If you use the data class
Simulink.CustomParameter or Simulink.CustomSignal, Simulink posts a
warning that identifies the class and describes one or more techniques for
eliminating it. You can ignore these warnings in R2011a, but consider making
the described changes now because the classes will be removed in a future
release.

Parts of Data Class Infrastructure No Longer Available
Simulink has been generating warnings for usage of the following data class
infrastructure features for several releases. As of R2011a, the features are
no longer supported.

• Custom storage classes not captured in the custom storage class
registration file (csc_registration) – warning displayed since R14SP2

• Built-in custom data class attributes BitFieldName and
FileName+IncludeDelimiter – warning displayed since R2008b

43

Simulink® Release Notes

Instead of... Use...

BitFieldName StructName

FileName+IncludeDelimiterHeaderFile

• Initial value of MPT data objects inside mpt.CustomRTWInfoSignal –
warning displayed since R2006a

Compatibility Considerations.

• When you use a removed feature, Simulink now generates an error.

• When loading a MAT-file that uses an unsupported feature, the load
operation suppresses the generated error such that it is not visible. In
addition, MATLAB silently deletes data that had been associated with the
unsupported feature. To prevent loss of data when loading a MAT-file, load
and resave the file with R2010b or earlier.

Simulink Signal Management

Data Store Support for Bus Signals
The following blocks support the use of bus and array of buses signals with
data stores:

• Data Store Memory

• Data Store Read

• Data Store Write

Benefits of using buses and arrays of buses with data stores include:

• Simplifying the model layout by associating multiple signals with a single
data store

• Producing generated code that represents the data store data as structures
that reflect the bus hierarchy

• Writing to and reading from data stores without creating data copies,
resulting in more efficient data access

44

Version 7.7 (R2011a) Simulink® Software

For details, see “Using Data Stores with Buses and Arrays of Buses”.

Compatibility Considerations. Pre-R2011a models that use data stores
work in R2011a without any modifications.

To save a model that uses buses with data stores to a pre-R2011a version, you
need to restructure that model to not rely on using buses with data stores.

Accessing Bus and Matrix Elements in Data Stores
You can select specific bus or matrix elements to read from or write to a data
store. To do so, use the Element Selection pane of the Data Store Read
block and the Element Assignment pane of the Data Store Write block.
Selecting bus or matrix elements offers the following benefits:

• Reducing the number of blocks in the model. For example, you can
eliminate a Data Store Read and Bus Selector block pair or a Data Store
Write and Bus Assignment block pair for each specific bus element that
you want to access.

• Faster simulation of models with large buses and arrays of buses.

See “Accessing Data Stores with Simulink Blocks”.

Array of Buses Support for Permute Dimensions, Probe, and
Reshape Blocks
The following blocks now support the use of an array of buses as an input
signal:

• Permute Dimensions

• Probe

• Reshape

For details about arrays of buses, see “Combining Buses into an Array of
Buses”.

45

Simulink® Release Notes

Using the Bus Editor to Create Simulink.Parameter Objects
and MATLAB Structures
You can use the Bus Editor to:

• Define or edit a Simulink.Parameter object with a bus object for its
data type. In the Bus Editor, select the parameter and use one of these
approaches:

- Select the File > Create/Edit a Simulink.Parameter object menu
item.

- Click the Create/Edit a Simulink.Parameter object icon () from
the toolbar.

You can then edit the Simulink.Parameter object in the MATLAB Editor.

• Invoke the Simulink.Bus.createMATLABStruct function for a bus object
for which you want to create a full MATLAB structure. In the Bus Editor,
select the bus object and use one of these approaches:

- Select the File > Create a MATLAB structure menu item.

- Click the Create a MATLAB structure icon () from the toolbar.

You can then edit the MATLAB structure in the MATLAB Editor.

Block Enhancements

Lookup Table, Lookup Table (2-D), and Lookup Table (n-D)
Blocks Replaced with Newer Versions in the Simulink Library
In R2011a, the following lookup table blocks have been replaced with newer
versions, which differ from the previous versions as follows:

46

Version 7.7 (R2011a) Simulink® Software

Block Enhancements to the Previous Version Other Changes

Lookup
Table

• Default integer rounding mode changed from
Floor to Simplest

• Support for the following features:

- Specification of parameter data types different
from input or output signal types

- Reduced memory use and faster code execution
for nontunable breakpoints with even spacing

- Cubic-spline interpolation and extrapolation

- Table data with complex values

- Fixed-point data types with word lengths up to
128 bits

- Specification of data types for fraction and
intermediate results

- Specification of index search method

- Specification of diagnostic for out-of-range
inputs

• Block renamed as 1-D
Lookup Table

• Icon changed

Lookup
Table (2-D)

• Default integer rounding mode changed from
Floor to Simplest

• Support for the following features:

- Specification of parameter data types different
from input or output signal types

- Reduced memory use and faster code execution
for nontunable breakpoints with even spacing

- Cubic-spline interpolation and extrapolation

- Table data with complex values

- Fixed-point data types with word lengths up to
128 bits

- Specification of data types for fraction and
intermediate results

• Block renamed as 2-D
Lookup Table

• Icon changed

47

Simulink® Release Notes

Block Enhancements to the Previous Version Other Changes

- Specification of index search method

- Specification of diagnostic for out-of-range
inputs

• Check box for Require all inputs to have the
same data type now selected by default

Lookup
Table (n-D)

• Default integer rounding mode changed from
Floor to Simplest

• Block renamed as n-D
Lookup Table

• Icon changed

When you load models from earlier versions of Simulink that contain the
Lookup Table, Lookup Table (2-D), and Lookup Table (n-D) blocks, those
versions of the blocks appear. In R2011a, the new versions of the lookup
table blocks appear only when you drag the blocks from the Simulink Library
Browser into new models.

When you use the add_block function to programmatically add the Lookup
Table, Lookup Table (2-D), or Lookup Table (n-D) blocks to a model, those
versions of the blocks appear. If you want to add the new versions of the
blocks to your model, change the source block path for add_block as follows:

Block Old Block Path New Block Path

Lookup Table simulink/Lookup Tables/Lookup
Table

simulink/Lookup Tables/1-D
Lookup Table

Lookup Table (2-D) simulink/Lookup Tables/Lookup
Table (2-D)

simulink/Lookup Tables/2-D
Lookup Table

Lookup Table (n-D) simulink/Lookup Tables/Lookup
Table (n-D)

simulink/Lookup Tables/n-D
Lookup Table

To upgrade your model to use new versions of the Lookup Table and Lookup
Table (2-D) blocks, follow these steps:

48

Version 7.7 (R2011a) Simulink® Software

Step Description Reason

1 Run the Simulink Model Advisor
check for Check model, local
libraries, and referenced
models for known upgrade
issues requiring compile time
information.

Identify blocks that do not have
compatible settings with the
new 1-D Lookup Table and 2-D
Lookup Table blocks.

2 For each block that does not have
compatible settings:

• Decide how to address each
warning.

• Adjust block parameters as
needed.

Modify each Lookup Table or
Lookup Table (2-D) block to make
them compatible with the new
versions.

3 Repeat steps 1 and 2 until you
are satisfied with the results of
the Model Advisor check.

Ensure that block replacement
works for the entire model.

4 Run the slupdate function on
your model.

Perform block replacement with
the 1-D Lookup Table and 2-D
Lookup Table blocks.

Note that after block replacement, the block names that appear in the model
remain the same. However, the block icons match the new ones for the 1-D
Lookup Table and 2-D Lookup Table blocks.

Compatibility Considerations. The Model Advisor check groups all Lookup
Table and Lookup Table (2-D) blocks into three categories:

• Blocks that have compatible settings with the new 1-D Lookup Table and
2-D Lookup Table blocks

• Blocks that have incompatible settings with the new 1-D Lookup Table
and 2-D Lookup Table blocks

• Blocks that have repeated breakpoints

Blocks with Compatible Settings

49

Simulink® Release Notes

When a block has compatible parameter settings with the new block,
automatic block replacement can occur without backward incompatibilities.

Parameter Settings in the New Block After
Automatic Block Replacement

Lookup Method in the
Lookup Table or Lookup
Table (2-D) Block Interpolation Extrapolation

Interpolation-Extrapolation Linear Linear

Interpolation-Use End
Values

Linear Clip

Use Input Below Flat Not applicable

Depending on breakpoint characteristics, the new block uses one of two index
search methods.

Breakpoint Characteristics in the Lookup
Table or Lookup Table (2-D) Block

Index Search Method in the New Block
After Automatic Block Replacement

Not evenly spaced Binary search

Evenly spaced and tunable

Evenly spaced and not tunable

A prompt appears, asking you to select Binary
search or Evenly spaced points.

The new block also adopts other parameter settings from the Lookup Table or
Lookup Table (2-D) block. For parameters that exist only in the new block,
the following default settings apply after block replacement:

Parameter in the New Block Default Setting After Block Replacement

Breakpoint data type Inherit: Same as corresponding input

Diagnostic for out-of-range input None

Blocks with Incompatible Settings

When a block has incompatible parameter settings with the new block, the
Model Advisor shows a warning and a recommended action, if applicable.

50

Version 7.7 (R2011a) Simulink® Software

• If you perform the recommended action, you can avoid incompatibility
during block replacement.

• If you use automatic block replacement without performing the
recommended action, you might see numerical differences in your results.

Incompatibility Warning Recommended Action What Happens for
Automatic Block
Replacement

The Lookup Method is Use
Input Nearest or Use Input
Above. The new block does not
support these lookup methods.

Change the lookup method to
one of the following:

• Interpolation -
Extrapolation

• Interpolation - Use End
Values

• Use Input Below

The Lookup Method
is Interpolation -
Extrapolation, but the
input and output are not the
same floating-point type. The
new block supports linear
extrapolation only when all
inputs and outputs are the
same floating-point type.

Change the extrapolation
method or the port data types
of the block.

The Lookup Method changes
to Interpolation - Use End
Values.

In the new block, this setting
corresponds to:

• Interpolation set to
Linear

• Extrapolation set to Clip

You also see a message that
explains possible numerical
differences.

The block uses small
fixed-point word lengths,
so that interpolation uses only
one rounding operation. The
new block uses two rounding
operations for interpolation.

None You see a message that
explains possible numerical
differences.

Blocks with Repeated Breakpoints

When a block has repeated breakpoints, the Model Advisor recommends that
you change the breakpoint data and rerun the check. You cannot perform
automatic block replacement for blocks with repeated breakpoints.

51

Simulink® Release Notes

Magnitude-Angle to Complex Block Supports CORDIC
Algorithm and Fixed-Point Data Types
The Magnitude-Angle to Complex block now supports the following
parameters:

52

Version 7.7 (R2011a) Simulink® Software

The benefits of the new block parameters are as follows:

New Block
Parameter

Purpose Benefit

Approximation
method

Specify the type of
approximation the
block uses to compute
output: None or CORDIC.

Enables you to use
a faster method of
computing block output
for fixed-point and HDL
applications.

Number of iterations For the CORDIC
algorithm, specify
how many iterations to
use for computing block
output.

Enables you to adjust
the precision of your
block output.

Scale output by
reciprocal of gain
factor

For the CORDIC
algorithm, specify
whether or not to scale
the real and imaginary
parts of the complex
output.

Provides a more
accurate numerical
result for the CORDIC
approximation.

This block now accepts and outputs fixed-point signals when you set
Approximation method to CORDIC.

Trigonometric Function Block Supports Complex Exponential
Output
The Trigonometric Function block now supports complex exponential output:
cos + jsin. This function works with the CORDIC algorithm.

This block also accepts inputs with unsigned fixed-point data types when you
use the CORDIC approximation. In previous releases, only signed fixed-point
inputs were supported.

53

Simulink® Release Notes

Shift Arithmetic Block Supports Specification of Bit Shift Values
as Input Signal
The Shift Arithmetic block now supports specification of bit shift values
from an input port. Previously, you could specify bit shift values only on the
dialog box. This enhancement enables you to change bit shift values without
stopping a simulation.

The block now also supports the following functionality:

Enhancement Benefit

Specification of diagnostic for
out-of-range bit shift values

Flags out-of-range bit shift values
during simulation

Option to check for out-of-range bit
shift values in the generated code

Enables you to control the efficiency
of the generated code

The following parameter changes apply to the Shift Arithmetic block. For
backward compatibility, the old command-line parameters continue to work.

Old Prompt on
Block Dialog
Box

New Prompt
on Block Dialog
Box

Old
Command-Line
Parameter

New
Command-Line
Parameter

Number of bits
to shift right

Bits to shift:
Number

nBitShiftRight BitShiftNumber

Number of
places by
which binary
point shifts
right

Binary points
to shift:
Number

nBinPtShiftRightBinPtShiftNumber

The read-only BlockType property has also changed from SubSystem to
ArithShift.

Multiple Lookup Table Blocks Enable Removal of
Range-Checking Code
When the breakpoint input to a Prelookup, 1-D Lookup Table, 2-D Lookup
Table, or n-D Lookup Table block falls within the range of valid breakpoint

54

Version 7.7 (R2011a) Simulink® Software

values, you can disable range checking in the generated code. By selecting
Remove protection against out-of-range input in generated code on
the block dialog box, your code can be more efficient.

Similarly, when the index input to an Interpolation Using Prelookup block
falls within the range of valid index values, you can disable range checking in
the generated code. By selecting Remove protection against out-of-range
index in generated code on the block dialog box, your code can be more
efficient.

55

Simulink® Release Notes

The Remove protection against out-of-range index in generated code
check box replaces the Check index in generated code check box from
previous releases. When you load models with the Interpolation Using
Prelookup block from previous releases, the following parameter mapping
applies:

Parameter Setting from
Previous Releases

Parameter Setting for R2011a

Check index in generated
code is selected.

Remove protection against out-of-range
index in generated code is not selected.

Check index in generated
code is not selected.

Remove protection against out-of-range
index in generated code is selected.

56

Version 7.7 (R2011a) Simulink® Software

For backward compatibility, the command-line parameter CheckIndexInCode
continues to work.

Enhanced Dialog Layout for the Prelookup and Interpolation
Using Prelookup Blocks
In R2011a, the dialog boxes for the Prelookup and Interpolation Using
Prelookup blocks consolidate parameters related to data type attributes on a
single tab named Data Types. This enhancement enables you to specify data
type attributes more quickly on the block dialog box.

• For the Prelookup block, you can now specify breakpoint, index, and
fraction attributes on a single tab.

• For the Interpolation Using Prelookup block, you can now specify table,
intermediate results, and output attributes on a single tab.

57

Simulink® Release Notes

Product of Elements Block Uses a Single Algorithm for
Element-Wise Complex Division
In previous releases, the Product of Elements block used two different
algorithms for handling element-wise complex division. For example, for a
matrix input with four elements (u1, u2, u3, and u4), the following behavior
would apply:

• For inputs with built-in integer and floating-point data types, the order of
operations was 1/(u1*u2*u3*u4).

• For inputs with fixed-point data types, the order of operations was
((((1/u1)/u2)/u3)/u4).

Starting in R2011a, the Product of Elements block uses a single algorithm
for handling element-wise complex division. For inputs of integer,

58

Version 7.7 (R2011a) Simulink® Software

floating-point, or fixed-point type, the order of operations is always
(((((1/u1)/u2)/u3)/u4) /uN).

Sign Block Supports Complex Floating-Point Inputs
The Sign block now supports complex inputs of type double or single. The
block output matches the MATLAB result for complex floating-point inputs.

When the input u is a complex scalar, the block output is:

sign(u) = u./ abs(u)

When an element of a vector or matrix input is complex, the block uses the
same formula that applies to scalar input.

MATLAB Fcn Block Renamed to Interpreted MATLAB Function
Block
In R2011a, the MATLAB Fcn block has been renamed to Interpreted
MATLAB Function block. The icon has also changed to match the new block
name. However, all functionality and block parameters remain the same. The
read-only BlockType property is also unchanged.

Existing scripts that use the add_block function to programmatically add the
MATLAB Fcn block to models do not require any changes.

When you load existing models that contain the MATLAB Fcn block, the block
name that appears in the model remains unchanged. However, the block icon
matches the new one for the Interpreted MATLAB Function block.

Environment Controller Block Port Renamed from RTW to Coder
In R2011a, the Environment Controller block has renamed the RTW port to
Coder. This enhancement better reflects the purpose of that input port, which
designates signals to pass through the block when code generation occurs
for a model.

Block Parameters on the State Attributes Tab Renamed
In R2011a, the block parameters Real-Time Workshop storage class and
Real-Time Workshop storage type qualifier have been renamed to Code

59

Simulink® Release Notes

generation storage class and Code generation storage type qualifier,
respectively. These two parameters appear on the State Attributes tab of the
following block dialog boxes:

• Discrete Filter

• Discrete PID Controller

• Discrete PID Controller (2DOF)

• Discrete State-Space

• Discrete Transfer Fcn

• Discrete Zero-Pole

• Discrete-Time Integrator

• Memory

• Unit Delay

Block Parameters and Values Renamed for Lookup Table
Blocks
In R2011a, the Action for out-of-range input parameter has been renamed
as Diagnostic for out-of-range input for the following blocks:

• Direct Lookup Table (n-D)

• Interpolation Using Prelookup

• n-D Lookup Table

• Prelookup

Also, the Process out-of-range input parameter has been renamed as
Extrapolation method for the Prelookup block.

For lookup table blocks that provide Interpolation method or
Extrapolation method parameters, the following changes apply:

60

Version 7.7 (R2011a) Simulink® Software

Parameter Value from Previous
Releases

Parameter Value in R2011a

None - Flat Flat

None - Clip Clip

Performance Improvement for Single-Precision Computations
of Elementary Math Operations
In R2011a, single-precision computations for elementary math operations are
faster. This enhancement applies to the following simulation modes:

• Normal

• Accelerator

Dead Zone Block Expands the Region of Zero Output
In R2011a, the Dead Zone block expands the region of zero output, or the dead
zone, to include inputs (U) that equal the lower limit (LL) or upper limit (UL):

Input Output

U >= LL and U <= UL Zero

U > UL U – UL

U < LL U – LL

In previous releases, the dead zone excluded inputs that equal the lower or
upper limit.

Enhanced PID Controller Blocks Display Compensator Formula
in Block Dialog Box
The PID Controller and PID Controller (2 DOF) blocks now display the
current compensator formula in the block dialog box. This display reflects the
current settings for controller type, controller form, and time domain.

61

Simulink® Release Notes

Ground Block Always Has Constant Sample Time
In R2011a, the sample time of the Ground block is now constant (inf)
regardless of the setting for Inline parameters in the Configuration
Parameters dialog box.

Compatibility Considerations. Previously, if Inline parameters was off,
the sample time of the Ground block depended on sample-time propagation.
Now, the following conditions hold true:

• Function-call subsystem blocks that have an unconnected function-call
port now have the correct sample time of constant (inf) regardless of
the setting for Inline parameters.

• Function-call subsystem blocks that have a function-call port connected
to a Ground block now have the correct sample time of constant (inf)
regardless of the setting for Inline parameters.

• Function-call subsystem blocks that have the Sample time type set to
periodic now correctly error out when they are connected to a Ground
block or unconnected.

New Function-Call Feedback Latch Block
The Function-Call Feedback Latch block allows you to break a feedback loop
involving data signals between function-call signals. You can use this block
for two specific scenarios:

• If a loop involves parent and child function-call blocks (that is, the initiator
of the child function-call block is inside the parent function-call block),
then place this block on the feedback signal from the child to the parent.
You can thus ensure that the value of the signal does not change during
execution of the child.

62

Version 7.7 (R2011a) Simulink® Software

• If a loop involves function-call blocks connected to branches of the same
function-call signal, then this block latches the signal at the input of the
destination function-call block, and thereby allows it to execute prior to the
source function-call block.

In either case, the latching results in the destination block reading a delayed
signal from the previous execution of the source function-call block.

63

Simulink® Release Notes

Outport Driving Merge Block Does Not Require IC in Simplified
Initializaton Mode
If an Outport block of a conditionally executed subsystem directly drives a
Merge block, then the Outport block no longer requires the specification of an
Initial Condition (IC) in simplified initialization mode. Simulink still expects
the Merge block to specify an IC. This enhancement applies only when the
Outport and Merge blocks are in the same model.

Discrete Filter, Discrete FIR Filter, and Discrete Transfer Fcn
Blocks Now Have Input Processing Parameter
The Discrete Filter, Discrete FIR Filter, and Discrete Transfer Fcn blocks
now have an Input processing parameter. This parameter enables you to
specify whether the block performs sample- or frame-based processing on the
input. To perform frame-based processing, you must have a DSP System
Toolbox license.

Model Blocks Can Now Use the GetSet Custom Storage Class
The GetSet custom storage class can now be used for the inports and outports
of Model blocks. To assign a GetSet custom storage class to the inport or
outport of a referenced model block, use one of the following methods.

1 Assign the GetSet custom storage class to the root-level inport or outport of
the referenced model.

2 Assign the GetSet custom storage class to scalar signals entering an inport
of the referenced model block in the parent model, provided one of the
following conditions is met.

a The referenced model uses function prototype control to specify that
the inport should be passed by value instead of being passed by pointer
to the Model block’s step function.

b The inport to which the GetSet custom storage class is assigned should
be passed by value.

3 Assign the GetSet custom storage class to a scalar signal leaving one of the
outports of the referenced model block in the parent model. In this case,
the referenced model must use function prototype control to specify that
the outport should be the returned value of the function.

64

Version 7.7 (R2011a) Simulink® Software

User Interface Enhancements

Model Explorer: Hiding the Group Column
By default, the property column that you use for grouping (the group column)
appears in the property table. That property also appears in the top row for
each group.

To hide the group column, use one of the following approaches:

• From the View menu, clear the Show Group Column check box.

• Within the property table, right-click a column heading and clear the
Show Group Column check box.

Simulation Data Inspector Enhancements

Multiple Plots in a View. The Simulation Data Inspector tool now supports
the configuration of multiple plots into one view. On the Inspect Signals
pane, on the View toolbar, select Show Details to display the View Details
table.

65

Simulink® Release Notes

You can create multiple views by clicking the New view from current
button. In each view, you can:

• Modify the number of plots by clicking the Layout column to display the
plot matrix.

66

Version 7.7 (R2011a) Simulink® Software

• Name, save, and reload the view using the corresponding buttons.

• Replace signal data for a run with the corresponding signal data of another
run by clicking the Replace runs button.

For more information, see “Visual Inspection of Signal Data in the Simulation
Data Inspector Tool”.

Display Run Properties. In R2011a, you can view the properties of a run. In
the Signal Browser table, right-click a run name to view a list of options. To
open the Run Properties dialog box, from the options list, select Properties.

New Toolbar Icons. The Simulation Data Inspector toolbar includes a new

icon for zooming out a section of a plot. The previous zoom out icon
now performs a fit to view operation, which enlarges a plot to fill the graph.
To perform either operation, select the icon, and click on a plot.

Model Advisor
In R2011a, the Model Advisor tool now includes easier control of the By
Product and By Task folders. In the Model Advisor, select View > Show
By Product Folder or Show By Task Folder to show or hide each folder.
These settings are persistent across MATLAB sessions.

In the By Task folder, there are two new subfolders:

• Modeling and Simulation

67

Simulink® Release Notes

• Code Generation Efficiency

For more information on the Model Advisor GUI, see “Consulting the Model
Advisor”.

Configuration Parameters Dialog Box Changes
The Configuration Parameters dialog box layout is improved to better support
your workflows. The Optimization pane is reorganized into three panes:

• General

• Signals and Parameters

• Stateflow

These panes make it easier to find parameters.

In R2011a, all tree nodes are collapsed by default. For details, see
“Configuration Parameters Dialog Box”.

S-Functions

S-Functions Generated with legacy_code function and
singleCPPMexFile S-Function Option Must Be Regenerated
Due to an infrastructure change, if you have generated an S-function with a
call to legacy_code that defines the S-function option singleCPPMexFile,
you must regenerate the S-function to use it with this release of Simulink.

For more information, see the description of legacy_code and “Integrating
Existing C Functions into Simulink Models with the Legacy Code Tool”.

Compatibility Considerations. If you have generated an S-function with a
call to legacy_code that defines the S-function option singleCPPMexFile,
regenerate the S-function to use it with this release of Simulink.

68

Version 7.6.1 (R2010bSP1) Simulink® Software

Version 7.6.1 (R2010bSP1) Simulink Software
This table summarizes what’s new in V7.6.1 (R2010bSP1):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

No No Bug Reports
Includes fixes

69

http://www.mathworks.com/support/bugreports/?product=SL&release=R2010bSP1
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010bSP1

Simulink® Release Notes

Version 7.6 (R2010b) Simulink Software
This table summarizes what’s new in V7.6 (R2010b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 70

• “Component-Based Modeling” on page 71

• “Embedded MATLAB Function Blocks” on page 73

• “Simulink Data Management” on page 75

• “Simulink File Management” on page 79

• “Simulink Signal Management” on page 80

• “Block Enhancements” on page 82

• “User Interface Enhancements” on page 87

• “S-Functions” on page 93

• “Function Being Removed in a Future Release” on page 94

Simulation Performance

Elimination of Regenerating Code for Rebuilds
For models that contain Model Reference blocks and that have not changed
between Rapid Acceleration simulations, the rebuild process is more efficient.

Previously, if an Accelerator simulation or a Code Generation ERT/GRT
was performed between two Rapid Acceleration simulations, then Simulink

70

http://www.mathworks.com/support/bugreports/?product=SL&release=R2010b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010b

Version 7.6 (R2010b) Simulink® Software

partially built the code a second time during the second Rapid Acceleration
simulation.

Now, providing the model checksum remains constant, Simulink does not
generate code for the second Rapid Accelerator simulation.

Component-Based Modeling

Model Workspace Is Read-Only During Compilation
During the compilation of a model, Simulink enforces that the model
workspace is read-only, by issuing an error if there is an attempt to change
a model workspace variable during compilation. This enforcement of a
read-only workspace prevents the simulation from failing or producing
incorrect results due to changes to the model workspace.

Compatibility Considerations. In previous releases, you could change
model workspace variables when compiling a model (for example, this could
occur when compiling referenced models). Rewrite any code that changes
model workspace variables during compilation of a model.

Support for Multiple Normal Mode Instances of a Referenced
Model
You can use Normal mode for multiple instances of a referenced model. Prior
to R2010b, a model with model references could use Normal mode for at most
one instance of each referenced model.

A referenced model must be in Normal mode for you to be able to use several
important Simulink and Stateflow features, including linearization and
model coverage analysis. Using Normal mode also can make editing and
testing models more efficient.

In the sldemo_mdlref_depgraph demo, see the “Interacting with the
Dependency Viewer in Instance View” section for an example of how to
use multiple Normal mode instances of a referenced model. For additional
information about using multiple Normal mode instances of a referenced
model, see “Using Normal Mode for Multiple Instances of Referenced Models”.

71

Simulink® Release Notes

Compatibility Considerations. The Save As feature preserves the
Simulation mode setting of the Model block as much as possible.

If the both of the following conditions are true, then the saved model does
not simulate:

• The R2010b model has multiple Normal mode instances of a referenced
model.

• You use the Save As feature to save the model to a release earlier than
R2010b that supports model reference Normal mode.

In this situation, the saved model does not simulate because only one instance
of a referenced model could be in Normal mode in that earlier release.

Also, in releases before R2010b, you could select the Refresh Model Blocks
menu item directly from the Edit menu in the Model Editor. In R2010b,
access the Refresh Model Blocks menu item from the Edit > Model
Blocks menu item.

New Variant Subsystem Block for Managing Subsystem
Design Alternatives
A Variant Subsystem block provides multiple implementations for a
subsystem where only one implementation is active during simulation.
You can programmatically swap implementations without modifying the
model. When the model is compiled, the Simulink engine chooses the active
subsystem from a selection of subsystems. The active subsystem is determined
by the values of the variant control variables and variant objects, which you
define in the base workspace. By modifying the values of the variant control
variables, you can easily specify which subsystem runs in your simulation.

For more information, see “Setting Up Variant Subsystems”. If you use the
Model Advisor to check a system containing a variant subsystem, see “Model
Advisor Limitations”, for more information.

Support for Bus and Enumerated Data Types on Masks
For the Masked Parameters dialog box, you can now create data type
parameters that support the specification of bus or enumerated (enum) data
types.

72

Version 7.6 (R2010b) Simulink® Software

To create a data type parameter that supports bus data types, in the Mask
Editor, select the Parameters pane.

For information about how to specify bus and enumerated data type
parameters, see “Data Type Control”.

sl_convert_to_model_reference Function Removed
The sl_convert_to_model_reference function is obsolete and has been
removed from the Simulink software.

To convert an atomic subsystem to a model reference, right-click the atomic
subsystem and select the Convert to Model Block menu item, or use the
Simulink.SubSystem.convertToModelReference function. See Atomic
Subsystem and “Converting a Subsystem to a Referenced Model” for more
information.

Verbose Accelerator Builds Parameter Applies to Model
Reference SIM Target Builds in All Cases
For referenced models, the Configuration Parameter > Optimization >
Verbose accelerator build parameter is no longer overridden by the
Configuration Parameter > Real-Time Workshop > Debug > Verbose
build parameter setting when building model reference SIM targets.

Embedded MATLAB Function Blocks

Specialization of Embedded MATLAB Function Blocks in
Simulink Libraries
You can now create library instances of the same Embedded MATLAB
Function block with distinct properties, including:

• Data type, size, complexity, sampling mode, range, and initial value

• Block sample time

• Fixed-point data type override mode

• Resolution to different MATLAB files on the path

73

Simulink® Release Notes

With this capability, you can create custom block libraries using Embedded
MATLAB Function blocks. For more information, see “Creating Custom Block
Libraries with MATLAB Function Blocks”.

Support for Creation and Processing of Arrays of Buses
The Embedded MATLAB Function block now supports arrays of buses.

Ability to Include MATLAB Code as Comments in Generated
C Code
You can now select to include MATLAB source code as comments in code
generated for an Embedded MATLAB Function block. This capability
improves traceability between generated code and the original source code.

Note This option requires a Real-Time Workshop® license.

For more information, see “MATLAB source code as comments” in the
Real-Time Workshop documentation.

Data Properties Dialog Box Enhancements
In R2010b, the following changes to the Data properties dialog box apply:

Parameters Location in
R2010a

Location in
R2010b

Benefit of
Location
Change

Limit range

• Minimum

• Maximum

Value
Attributes tab

General tab Consistent with
blocks in the
Simulink library
that specify these
parameters on
the same tab as
the data type.

Save final
value to base
workspace

Value
Attributes tab

Description tab Consolidates
parameters
related to the
data description.

74

Version 7.6 (R2010b) Simulink® Software

Parameter Being Removed in Future Release. The Save final value to
base workspace will be removed in a future release.

Simulink Data Management

Enhanced Support for Bus Objects as Data Types
The following blocks have added support for specifying a bus object as a data
type:

• Constant

• Signal Specification

For the Constant block, if you use a bus object as a data type, you can set the
Constant value to be one of these values:

• A full MATLAB structure corresponding to the bus object

• 0 to indicate a structure corresponding to the ground value of the bus object

See the Constant block reference page for an example that shows how to
use a structure to simplify a model.

The following blocks and Simulink classes now use a consistent Data type
parameter option, Bus: <object name>, for specifying a bus object as a
data type:

• Constant block

• Bus Creator block

• Inport block

• Outport block

• Signal Specification block

• Simulink.BusElement class

• Simulink.Parameter class

• Simulink.Signal class

75

Simulink® Release Notes

Compatibility Considerations. The interface for specifying a bus object as a
data type is now consistent for the blocks that support that capability. Making
the interface consistent involves removing some block parameters that existed
in releases prior to R2010b. The following table summarizes the changes.

Block Removed
Pre-R2010b
Parameters

Replacement
R2010b Parameter

Bus Creator Bus object

Specify properties
via bus object

Output data type

Inport Specify properties
via bus object

Bus object for
validating input
bus

Data type

Outport Specify properties
via bus object

Bus object for
validating input
bus

Data type

Enhancements to Simulink.NumericType Class
The Simulink.NumericType class now has the following methods:

• isboolean

• isdouble

• isfixed

• isfloat

• isscalingbinarypoint

• isscalingslopebias

• isscalingunspecified

76

Version 7.6 (R2010b) Simulink® Software

• issingle

Importing Signal Data Sets into the Signal Builder Block
The Signal Builder block can now accept existing signal data sets. In previous
releases, you had to enter existing signal data one by one in the Signal Builder
dialog box or with the signalbuilder function.

In the Signal Builder block dialog box, you can now use the File > Import
from File to import files that contain data sets. These data sets can contain
test data that you have collected, or you can manually create these files. The
block accepts the appropriately formatted file types:

• Excel (.xls, .xlsx)

• Comma-separated value (CSV) text files (.csv)

• MAT-files (.mat)

For further information, see “Working with Signal Groups” in the Simulink
User’s Guide.

signalbuilder Function Changes
The signalbuilder function has improved functionality:

To... Use...

Add new groups to the Signal
Builder block.

'append'

Append signals to existing signal
groups in the Signal Builder block.

'appendsignal'

Make visible signals that are hidden
in the Signal Builder block.

'showsignal'

Make invisible signals that are
visible in the Signal Builder block.

'hidesignal'

From File Block Enhancements
The From File block includes the following new features:

77

Simulink® Release Notes

• You can specify the method that the From File block uses to handle
situations where there is not an exact match between a Simulink sample
time hit and a time in the data file that the From File block reads.

- In previous releases, the From File block automatically applied a linear
interpolation and extrapolation method.

- In R2010b, you can set the interpolation method independently for each
of these situations:

• Data extrapolation before the first data point

• Data interpolation within the data time range

• Data extrapolation after the last data point

- The choices for the interpolation methods are (as applicable):

• Linear interpolation

• Zero-order hold

• Ground value

• The From File block now can read signal data that has an enumerated
(enum) data type, in addition to previously supported data types.

Finding Variables Used by a Model or Block
You can get a list of variables that a model or block uses.

In the Simulink Editor, right-click a block, subsystem, or the canvas and
select the Find Referenced Variables menu item.

Simulink returns the results in the Model Explorer.

As an alternative, you can use the Model Explorer interface directly to find
variables used by a model or block, as described in “Finding Variables That
Are Used by a Model or Block”.

enumeration Function Replaced With MATLAB Equivalent
Starting with R2010b, when you invoke the enumeration function, you will
be invoking a MATLAB equivalent of the Simulink function with the same
name available in earlier releases.

78

Version 7.6 (R2010b) Simulink® Software

See the description of the new MATLAB enumeration function introduced
with new support for enumeration classes.

Programmatic Creation of Enumerations
The new Simulink.defineIntEnumType function provides a way to
programmatically import enumerations defined externally—for example, in a
data dictionary—to MATLAB. The function creates and saves a enumeration
class definition file on the MATLAB path.

For more information, see the description of Simulink.defineIntEnumType
and “Enumerations and Modeling”.

Simulink.Signal and Simulink.Parameter Objects Now Obey
Model Data Type Override Settings
Simulink.Signal and Simulink.Parameter objects now honor model-level
data type override settings. This capability allows you to share fixed-point
models that use Simulink.Signal or Simulink.Parameter objects with users
who do not have a Simulink® Fixed Point™ license.

To simulate a model without using Simulink Fixed Point, use the Fixed-Point
Tool to set the model-level Data type override setting to Double or Single
and the Data type override applies to parameter to All numeric types.
If you use fi objects or embedded numeric data types in your model, set the
fipref DataTypeOverride property to TrueDoubles or TrueSingles and the
DataTypeOverrideAppliesTo property to All numeric types to match the
model-level settings. For more information, see fxptdlg in the Simulink
documentation.

Simulink File Management

Autosave Upgrade Backup
New Autosave option to backup Simulink models when upgrading to a newer
release. Automatically saving a backup copy can be useful for recovering the
original file in case of accidental overwriting with a newer release.

You can set this Autosave option in the Simulink Preferences Window. See
Autosave in the Simulink Graphical User Interface documentation.

79

Simulink® Release Notes

Model Dependencies Tools
Enhanced file dependency analysis has the following new features:

• Find workspace variables that are required by your design but not defined
by a file in the manifest

• Store code analysis warnings in the manifest

• Validate manifests before exporting to a ZIP file, to check for missing files
and data

• Compare manifests with ZIP files and folders

For details see “Model Dependencies”.

Simulink Signal Management

Arrays of Buses
You can now use arrays of buses to represent structured data compactly,
eliminating the need to include multiple copies of the same buses. You can
iteratively process each element of the bus array, for example, by using a
For Each subsystem.

The following blocks now support arrays of buses:

• Virtual blocks (see “Virtual Blocks”)

• These bus-related blocks:

- Bus Assignment

- Bus Creator

- Bus Selector

• These nonvirtual blocks:

- Merge

- Multiport Switch

- Rate Transition

- Switch

80

Version 7.6 (R2010b) Simulink® Software

- Zero-Order Hold

• Assignment

• MATLAB Function (formally called Embedded MATLAB Function)

• Matrix Concatenate

• Selector

• Vector Concatenate

• Width

• Two-Way Connection (a Simscape™ block)

Create an array of buses with either a Vector Concatenate or Matrix
Concatenate block. The input bus signals to these blocks must be nonvirtual
and of the same type (that is, have the same names, hierarchies, and
attributes for the leaf elements).

The generated code creates arrays of C structures that represent arrays of
buses. You can use the Legacy Code Tool to integrate legacy C code that uses
arrays of structures.

In an Embedded MATLAB® Function block, you can process arrays of bus
signals using regular MATLAB syntax.

The use of arrays of buses does not support the following:

• Virtual buses

• Data loading or logging

• Stateflow action language

For details about using arrays of buses, see “Combining Buses into an Array
of Buses”.

Compatibility Considerations. If you specify a bus object as the data type
for a root Inport or Outport block, the Dimensions parameter is enabled, to
allow you to specify dimensions other than 1 or -1 for an array of buses.

81

Simulink® Release Notes

In previous releases, the Dimensions parameter was ignored if you specified
a bus object as the data type for a root Inport or Outport block. If you specified
a dimension other than 1 or -1, then do one of the following, depending on
whether you want to use an array of buses or you want to output as a virtual
bus:

• To use an array of buses:

- In the Signal Attributes pane of the block parameters dialog box for
a root Inport or Outport block, select the Output as nonvirtual bus
option.

- In the Configuration Parameters > Diagnostics > Connectivity>>
pane, set Mux blocks used to create bus signals to error.

• To output as a virtual bus, set the Dimensions parameter to 1 or -1.

Loading Bus Data to Root Input Ports
You can now use MATLAB structures and timeseries objects when defining
root-level input port signals. Using a structure of timeseries objects for bus
signals simplifies loading bus data to root input ports.

To specify the input, use the Configuration Parameters > Data
Import/Export > Input parameter. For more information, see “Importing
MATLAB timeseries Data to a Root-Level Input Port” and “Importing
Structures of MATLAB timeseries Objects for Bus Signals to a Root-Level
Input Port”.

Block Enhancements

Prelookup Block Supports Dynamic Breakpoint Data
The Prelookup block now supports specification of breakpoint data from an
input port. Previously, you could specify breakpoint data only on the dialog
box.

This enhancement enables you to change breakpoint data without stopping
a simulation. For example, you can incorporate new breakpoint data if the
physical system you are simulating changes.

82

Version 7.6 (R2010b) Simulink® Software

Interpolation Using Prelookup Block Supports Dynamic Table
Data
The Interpolation Using Prelookup block now supports specification of table
data from an input port. Previously, you could specify table data only on
the dialog box.

This enhancement enables you to change table data without stopping a
simulation. For example, you can incorporate new table data if the physical
system you are simulating changes.

Multiport Switch Block Supports Specification of Default Case
for Out-of-Range Control Input
When the control input of the Multiport Switch block does not match any
data port indices, you can specify the last data port as the default or use
an additional data port. This enhancement enables you to avoid simulation
errors and undefined behavior in the generated code.

Switch Block Icon Shows Criteria and Threshold Values
This enhancement helps you identify the Criteria for passing first input
and Threshold values without having to open the Switch block dialog box.

83

Simulink® Release Notes

Block Icon Block Dialog Box

Trigonometric Function Block Supports Expanded Input Range
for CORDIC Algorithm
The Trigonometric Function block now supports an input range of [–2π,
2π) radians when you set Function to sin, cos, or sincos and set
Approximation method to CORDIC. Previously, the input range allowed was
[0, 2π) radians.

This enhancement enables you to use a wider range of input values that are
natural for problems that involve trigonometric calculations.

84

Version 7.6 (R2010b) Simulink® Software

Repeating Sequence Stair Block Supports Enumerated Data
Types
The Repeating Sequence Stair block now supports enumerated data types.
For more information, see “Enumerations and Modeling” in the Simulink
User’s Guide.

Abs Block Supports Specification of Minimum Output Value
The Abs block now supports specification of an Output minimum parameter.
This enhancement enables you to specify both minimum and maximum values
for block output. In previous releases, you could specify the maximum output
value but not the minimum, which Simulink assumed to be 0 by default.

Saturation Block Supports Logging of Minimum and Maximum
Values for the Fixed-Point Tool
When you set Fixed-point instrumentation mode to Minimums, maximums
and overflows in the Fixed-Point Tool, the Saturation block logs minimum
and maximum values. In previous releases, this block did not support
min/max logging.

Vector Concatenate Block Now Appears in the Commonly Used
and Signal Routing Libraries
In the Simulink Library Browser, the Vector Concatenate block now appears
in the Commonly Used and Signal Routing libraries. This block continues to
appear in the Math Operations library.

Model Discretizer Support for Second-Order Integrator Block
You can now discretize a model containing a Second-Order Integrator block
using the Model Discretizer. Based on your block parameter settings, the tool
replaces the continuous Second-Order Integrator block with one of the four
discrete subsystems in the z-domain.

Integer Delay and Unit Delay Blocks Now Have Input
Processing Parameter
The Integer Delay and Unit Delay blocks now have an Input processing
parameter. This parameter enables you to specify whether the block performs

85

Simulink® Release Notes

sample- or frame-based processing on the input. To perform frame-based
processing, you must have a Signal Processing Blockset™ license.

Compatibility Considerations. Beginning this release, MathWorks is
changing how our products control frame-based processing. Previously,
signals themselves were sample or frame based. Our blocks inherited that
information from the signal, and processed the input accordingly, either as
individual samples or as frames of data. Beginning this release, signals are
no longer responsible for carrying information about their frame status. The
blocks themselves now control whether they perform sample- or frame-based
processing on the input.

Some blocks can do only one type of processing and thus require no changes.
Other blocks can do both sample- and frame-based processing and thus
require a new parameter. The Integer Delay and Unit Delay blocks fall into
the latter category.

If you have any Integer Delay or Unit Delay blocks in an R2010a or earlier
model, those blocks will continue to produce the same results in R2010b.
When you open an existing model with an Integer Delay or Unit Delay
block in R2010b, the Input processing parameter of those blocks will
be set to Inherited. Your models will continue to run in this mode,
but it is recommended that you run the slupdate function to set the
Input processing parameter to the equivalent non-inherited mode. The
non-inherited modes are Elements as channels (sample based) and
Columns as channels (frame based).

If you do not run the slupdate function on your model before the Inherited
option is removed, any Input processing parameter set to Inherited on an
Integer Delay or Unit Delay block will be set automatically to Elements as
channels (sample based).

Data Store Read Block Sample Time Default Changed to -1
In R2010b, the Data Store Read block uses a default value of -1 for the
Sample time, for consistency with the Data Store Write block and most other
blocks. In previous releases, the default sample time was 0.

Compatibility Considerations. The Sample time default for the Data
Store Read block has changed from 0 in previous releases to -1 in R2010b.

86

Version 7.6 (R2010b) Simulink® Software

Support of Frame-Based Signals Being Removed From the
Bias Block
Starting in R2010b, frame-based signal support is being removed from the
Bias block. In a future release, the block will no longer support frame-based
processing. To offset a frame-based signal in R2010b or later releases, you can
use the Signal Processing Blockset Array-Vector Add block.

Compatibility Considerations. If you have any R2010a or earlier models
that use the Bias block to offset a frame-based signal, you can use the
slupdate function to upgrade your model. For each instance where you use a
Bias block with a frame-based input signal, the slupdate function replaces
the Bias block with an Array-Vector Add block.

Relaxation of Limitations for Function-Call Split Block
Two limitations of the Function-Call Split block have been relaxed for R2010b.

• Previously, the direct children of a branched function-call had to have
periodic or asynchronous sample time. Now the direct children can also
be triggered. Therefore, the branched function-call can trigger a Stateflow
chart directly.

• Previously, if a branched function-call initiator was a Stateflow event, then
the Stateflow function-call output event had to be bound to a particular
state. Now the event can be bound or unbound to a state when invoking a
branched function-call.

User Interface Enhancements

Model Explorer and Command-Line Support for Saving and
Loading Configuration Sets
Previously, you could save and load a configuration set from the command line
only, requiring many steps. Now you can save and load a configuration set
using the Model Explorer. You can also save or load the active configuration
set using one function, the Simulink.BlockDiagram.saveActiveConfigSet
or Simulink.BlockDiagram.loadActiveConfigSet function.

For details, see the following sections in the Simulink User’s Guide:

87

Simulink® Release Notes

• “Save a Configuration Set”

• “Load a Saved Configuration Set”

Model Explorer: Grouping by a Property
In the Contents pane, you can group data based on a property values. For
example, you can group by the BlockType property by right-clicking that
column heading and selecting the Group by This Column menu item. The
result looks similar to this:

For details, see “Grouping by a Property”.

Model Explorer: Filtering Contents
In the Contents pane, you can specify a text string that the Model Explorer
uses to filter the displayed objects. Use the Filter Contents text box at the
top of the Contents pane to specify the text for filtering.

88

Version 7.6 (R2010b) Simulink® Software

For details, see “Filtering Contents”.

Model Explorer: Finding Variables That Are Used by a Model
or Block
In the Model Explorer, you can get a list of variables that a model or block
uses. For example, one way to get that list of variables is:

1 In the Contents pane, right-click the block for which you want to find
what variables it uses.

2 Select the Find Referenced Variables menu item.

You can also use the following approaches to find variables that are used
by a model or block:

• In the Model Explorer, in the Model Hierarchy pane, right-click a model
or block and select the Find Referenced Variables menu item.

• In the Model Explorer, in the search bar, use the for Referenced
Variables search type option.

• In the Model Editor, right-click a block, subsystem, or the canvas and select
the Find Referenced Variables option.

89

Simulink® Release Notes

For details, see “Finding Variables That Are Used by a Model or Block”.

Model Explorer: Finding Blocks That Use a Variable
You can use the Model Explorer to get a list of blocks that use a workspace
variable. One way to get that list of blocks is to right-click a variable in the
Contents pane and select the Find Where Used menu item.

You can also find blocks that use a variable using one of these approaches:

• In the Search bar, select the for Variable Usage search type option.

• In the Search Results tab, right-click a variable and select the Find
Where Used menu item.

For details, see “Finding Blocks That Use a Specific Variable”.

Model Explorer: Exporting and Importing Workspace
Variables
You can export workspace variables from the Model Explorer to a MATLAB
file or MAT-file.

One way to select the variables to export is by right-clicking the workspace
node (for example, Base Workspace) and selecting the Export menu item.

Another way to select variables to export is to:

1 In the Contents pane, select the variables that you want to export.

2 Right-click on one of the highlighted variables and select the Export
Selected menu item.

Also, you can import variables into a workspace in the Model Explorer:

1 In the Model Hierarchy pane, right-click the workspace into which you
want to import variables.

2 Select the Import menu item.

90

Version 7.6 (R2010b) Simulink® Software

For details, see “Exporting Workspace Variables” and “Importing Workspace
Variables”.

Model Explorer: Link to System
The Contents of link at the top left side of the Contents pane links to the
currently selected node in the Model Hierarchy pane.

Lookup Table Editor Can Now Propagate Changes in Table
Data to Workspace Variables with Nonstandard Data Format
In R2010b, the Lookup Table Editor can propagate changes in table data to
workspace variables with nonstandard data format when you:

• Use sl_customization.m to register a customization function for the
Lookup Table Editor.

• Store this customization function on the MATLAB search path.

For more information, see “Lookup Table Editor” in the Simulink User’s
Guide.

Enhanced Designation of Hybrid Sample Time
Because of a new sample time enhancement, a block or signal with a
continuous and a fixed in minor step sample time is no longer designated as
hybrid. Instead, the block or signal is continuous and colored black. This
enhancement assists in identifying hybrid subsystems that require attention.

Inspect Solver Jacobian Pattern
You can now inspect the solver Jacobian pattern in MATLAB and thereby
determine if the pattern for your model is sparse. If so, the Sparse
Perturbation Method and the Sparse Analytical Method may be able to take
advantage of this sparsity pattern to reduce the number of computations
necessary and thereby improve performance. For a demonstration that
explains how to inspect and assess the sparsity pattern, see Exploring the
Solver Jacobian Structure of a Model.

91

Simulink® Release Notes

Inspection of Values of Elements in Checksum
You can now use Simulink.BlockDiagram.getChecksum to inspect the
individual values of the elements making up the ConfigSet checksum.

Conversion of Error and Warning Messages Identifiers
In R2010b, all error and warning message identifiers that Simulink issues
have a converted format. As part of this conversion, error and warning
identifiers changed from a two-part format to a three-part format. For
example, the message identifier ’Simulink:SL_SetParamWriteOnly’ is now
’Simulink:Command:SetParamWriteOnly’.

Compatibility Considerations. Scripts that search for specific
message identifiers or that turn off warning messages using
an identifier must be updated with the new error and warning
message identifiers. For an example script and a complete
mapping of the new identifiers to the original identifiers, see
http://www.mathworks.com/support/solutions/en/data/1-CNY5F6/index.html.

View and Compare Logged Signal Data from Multiple
Simulations Using New Simulation Data Inspector Tool
This release introduces the new Simulation Data Inspector tool for quickly
viewing and comparing logged signal data. You can use the tool to:

• View signal data in a graph

• View a comparison of specified signal data in a graph, including a plot of
their differences

• Store signal data for multiple simulations so that you can specify and
compare signal data between multiple simulations

For more information, see “Inspecting and Comparing Logged Signal Data”
and “Completing a Basic Simulation Workflow”.

Viewing Requirements Linked to Model Objects
If your model, or blocks in your model, has links to requirements in external
documents, you can now perform the following tasks without a Simulink®

Verification and Validation™ license:

92

 http://www.mathworks.com/support/solutions/en/data/1-CNY5F6/index.html

Version 7.6 (R2010b) Simulink® Software

• Highlight objects in a model that have links to requirements

• View information about a requirement

• Navigate from a model object to associated requirements

• Filter requirements highlighting based on keywords

S-Functions

Legacy Code Tool Support for Arrays of Simulink.Bus
The Legacy Code Tool now supports arrays of Simulink.Bus objects as valid
data types in function specifications. For more information see “Supported
Data Types” under “Declaring Legacy Code Tool Function Specifications”.

S-Functions Generated with legacy_code function and
singleCPPMexFile S-Function Option Must Be Regenerated
Due to an infrastructure change, if you have generated an S-function with a
call to legacy_code that defines the S-function option singleCPPMexFile,
you must regenerate the S-function to use it with this release of Simulink.

For more information, see the description of legacy_code and “Integrating
Existing C Functions into Simulink Models with the Legacy Code Tool”.

Compatibility Considerations. If you have generated an S-function with a
call to legacy_code that defines the S-function option singleCPPMexFile,
regenerate the S-function to use it with this release of Simulink.

Level-2 M-File S-Function Block Name Changed to Level-2
MATLAB S-Function
Level-2 MATLAB S-Function is the new name for the Simulink block
previously called Level-2 M-File S-Function. In the Function Block
Parameters dialog box, S-function name is the new name for the parameter
previously called M-file name. The block type M-S-Function remains
unchanged.

Compatibility Considerations. If you have a MATLAB script that uses the
add_block function with the old block name, you need to update your script
with the new name.

93

Simulink® Release Notes

Function Being Removed in a Future Release
This function will be removed in a future release of Simulink software.

Function Name What Happens
When You Use This
Function?

Compatibility
Considerations

simplot Still works in R2010b Use the Simulation
Data Inspector to
plot simulation data.

94

Version 7.5 (R2010a) Simulink® Software

Version 7.5 (R2010a) Simulink Software
This table summarizes what’s new in V7.5 (R2010a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 95

• “Component-Based Modeling” on page 96

• “Embedded MATLAB Function Blocks” on page 99

• “Simulink Data Management” on page 100

• “Simulink Signal Management” on page 104

• “Block Enhancements” on page 108

• “User Interface Enhancements” on page 121

• “S-Functions” on page 125

• “Documentation Improvements” on page 126

Simulation Performance

Computation of Sparse and Analytical Jacobian for Implicit
Simulink Solvers
The implicit Simulink solvers now support numerical and analytical methods
for computing the Jacobian matrix in one of the following representations:
sparse perturbation, full perturbation, sparse analytical, and full analytical.
The sparse methods attempt to improve performance by taking advantage
of sparsity information associated with the Jacobian matrix. Similarly,

95

http://www.mathworks.com/support/bugreports/?product=SL&release=R2010a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2010a

Simulink® Release Notes

the analytical methods attempt to improve performance by computing the
Jacobian using analytical equations rather than the perturbation equations.

Since the applicability of these representations is highly model dependent,
an auto option directs Simulink to use a heuristic to choose an appropriate
representation for your model. In the case of a model that has a large number
of states and for which the Jacobian is computed in sparse analytical form, the
performance improvement may be substantial. In general, the performance
improvement achieved varies from model to model.

Sparse Perturbation Support for RSim and Rapid Accelerator
Mode
For implicit Simulink solvers, the numerical sparse perturbation method for
solving the Jacobian supports both RSim and Rapid Accelerator mode.

Increased Accuracy in Detecting Zero-Crossing Events
The zero-crossing bracketing algorithm now uses a smaller tolerance for
defining the interval in which an event occurs. The resulting increased
accuracy of locating an event means that existing models may exhibit slightly
different numerical results.

Saving Code Generated by Accelerating Models to slprj Folder
In Accelerator mode and in Rapid Accelerator mode, a build has
historically resulted in the creation of generated code, respectfully, in
the modelname_accel_rtw and the modelname_raccel_rtw folders in the
current working folder. However, in order to be more consistent with other
builds, in R2010a and future releases, these files will be created in the
slprj/accel/modelname and the slprj/raccel/modelname folders.

Component-Based Modeling

Defining Mask Icon Variables
For model efficiency, use the Icon & Ports pane to run MATLAB code and to
define variables used by the mask icon drawing commands. In releases earlier
than R2010a, you had to use the Initialization pane to define variables
used for icon drawing.

96

Version 7.5 (R2010a) Simulink® Software

Simulink executes the MATLAB code in the Icon & Ports pane only when
the block icon needs to be drawn. If you include variables used by mask
icon drawing commands in the Initialization pane, Simulink evaluates the
variables as part of simulation and code generation.

For more information, see “Defining a Mask Icon”.

Compatibility Considerations. Starting in R2010a, you can execute any
MATLAB function in the Ports & Icons pane of the Mask Editor. If a
variable in the mask workspace has the same name as a function in the Ports
& Icons pane, Simulink returns an error.

For Each Subsystem Block
The For Each Subsystem block is very useful for modeling scenarios where you
need to repeat the same algorithm on individual elements (or submatrices)
of an input signal. The set of blocks within the subsystem represent the
algorithm that is to be applied to a single element (or submatrix) of the
original signal. You can configure the inputs of the subsystem to decompose
the corresponding inputs into elements (or submatrices), and configure the
outputs to suitably concatenate the processed results. Additionally, each block
that has states inside this subsystem maintains separate sets of states for
each element or submatrix it processes. Consequently, the operation of this
subsystem is akin to copying the contents of the subsystem as many times
as the number of elements in the original input signal, and then processing
each element through its respective subsystem copy.

An additional benefit of this subsystem is that it may be utilized to improve
code reuse in Real-Time Workshop generated code for certain models.
Consider a model containing two reusable Atomic Subsystems with the same
scalar algorithm applied to each element of the signal. If the input signal
dimensions for these subsystems are different, you will find that two distinct
functions are produced in the code generated by Real-Time Workshop for
this model. Now, if you were to convert the two subsystems to For Each
Subsystems such that the contents of each processes a single scalar element,
then you will find that the two subsystems produce a single function in the
code generated by Real-Time Workshop. This function is parameterized by
the number of elements to be processed.

97

Simulink® Release Notes

New Function-Call Split Block
A new Function-Call Split block allows you to branch periodic and
asynchronous function-call signals and connect them to multiple function-call
subsystems (or models). These subsystems (or models) are guaranteed to
execute in the order determined by their data dependencies. If a deterministic
order cannot be computed, the model produces an error.

To test the validity of your function-call connections, use the Model Advisor
diagnostic, Check usage of function-call connections. This diagnostic
determines if:

• Configurations > Diagnostics > Connectivity > Invalid function-call
connection is set to error

• Configuration Parameters > Diagnostics > Connectivity >
Context-dependent inputs is set to Enable All

Trigger Port Enhancements
You can use trigger ports, which you define with a Trigger block, in new ways:

• Place edge-based (rising, falling, or either), as well as function-call, trigger
ports at the root level of a model. Before R2010a, to place a trigger port in a
root-level model, you had to set the trigger type to function-call.

• Place triggered ports in models referenced by a Model block. See “Triggered
Models”.

• Lock down the data type, port dimension, and trigger signal sample time.
To specify these values, use the new Signal Attributes pane of the Block
Parameters dialog box of the Trigger block. Specifying these attributes is
useful for unit testing and running standalone simulation of a subsystem
or referenced model that has an edge-based trigger port. See “Triggered
Models”.

Compatibility Considerations. When you add a trigger port to a root-level
model, if you use the File > Save As option to specify a release before
R2010a, Simulink replaces the trigger port with an empty subsystem.

98

Version 7.5 (R2010a) Simulink® Software

Model Reference Support for Custom Code
Select the new SupportModelReferenceSimTargetCustomCode model
parameter to have SIM target Accelerator code generation include Stateflow
and Embedded MATLAB custom code for a referenced model. The default
setting for this parameter is off.

Embedded MATLAB Function Blocks

New Ability to Use Global Data
Embedded MATLAB Function blocks are now able to use global data within a
Simulink model and across multiple models.

This feature provides these benefits:

• Allows you to share data between Embedded MATLAB Function blocks
and other Simulink blocks without introducing additional input and output
wires in your model. This reduces unnecessary clutter and improves the
readability of your model.

• Provides a means of scoping the visibility of data within your model.

For more information, see “Using Global Data with the MATLAB Function
Block” in the Simulink documentation.

Support for Logical Indexing
Embedded MATLAB Function blocks now support logical indexing when
variable sizing is enabled. Embedded MATLAB supports variable-size data
by default for MEX and C/C++ code generation.

For more information about logical indexing, see “Using Logicals in Array
Indexing” in the MATLAB documentation.

Support for Variable-Size Matrices in Buses
Embedded MATLAB Function blocks now support Simulink buses containing
variable-size matrices as inputs and outputs.

99

Simulink® Release Notes

Support for Tunable Structure Parameters
Embedded MATLAB Function blocks now support tunable structure
parameters. See “Working with Structure Parameters in MATLAB Function
Blocks”.

Check Box for ’Treat as atomic unit’ Now Always Selected
In existing models, simulation and code generation for Embedded MATLAB
Function blocks always behave as if the Treat as atomic unit check box in
the Subsystem Parameters dialog box is selected. Starting in R2010a, this
check box is always selected for consistency with existing behavior.

Simulink Data Management

New Function Finds Variables Used by Models and Blocks
The new Simulink.findVars function returns information about workspace
variables and their usage. For example, you can use Simulink.findVars,
sometimes in conjunction with other Simulink functions, to:

• Identify all workspace variables used by a model or block

• Identify any workspace variables unused by a model or block

• Search a model for all places where a specified variable is referenced

• Subdivide a model, including only necessary variables with each model

See Simulink.findVars and the other Simulink functions referenced on that
page for more information.

MATLAB Structures as Tunable Structure Parameters
You can create a MATLAB structure that groups base workspace variables
into a hierarchy, and dereference the structure fields to provide values
in Simulink block parameter expressions. This technique reduces base
workspace clutter and allows related workspace variables to be conveniently
grouped. However, in previous releases you could not use a MATLAB
structure as a masked subsystem or a model reference argument, and no
value given by a MATLAB structure field could be tuned. These restrictions

100

Version 7.5 (R2010a) Simulink® Software

limited the usefulness of MATLAB structures for grouping variables used in
block parameter expressions.

In R2010a, these restrictions no longer apply to MATLAB structures
that contain only numeric data. You can use a numeric structure, or any
substructure within it, as a masked subsystem or a model reference argument,
thereby passing all values in the structure with a single argument. You
can also control MATLAB structure tunability using the same techniques
that control MATLAB variable tunability. In R2010a, all values in a given
structure must be either tunable or nontunable. See “Using Structure
Parameters” for more information.

Simulink.saveVars Documentation Added
The Simulink.saveVars function was added in R2009b but was incompletely
documented. See “New Function Exports Workspace Variables and Values”
on page 136 for more information.

Custom Floating-Point Types No Longer Supported
Custom floating-point types, float(TotalBits, ExpBits), are no longer
supported.

Compatibility Considerations. If you have code that uses custom
floating-point types, modify this code using one of these methods:

• Replace calls to float(TotalBits, ExpBits) with calls to
fixdt('double') or fixdt('single') as appropriate.

• Create your own custom float replacement function.

Write a MATLAB function custom_float_user_replacement and place
the file on your MATLAB path. This function must take TotalBits and
ExpBits as input arguments and return a supported numerictype object,
such as fixdt('double') or fixdt('single').

For example,

function DataType = custom_float_user_replacement(TotalBits, ExpBits

if (TotalBits <= 32) && (ExpBits <= 8)
DataType = numerictype('single');

101

Simulink® Release Notes

else
DataType = numerictype('double');

end

In R2010a and future releases, if the file
custom_float_user_replacement.m is on your MATLAB
path, calls to float(TotalBits, ExpBits) automatically call
custom_float_user_replacement(TotalBits, ExpBits).

Data Store Logging
You can log the values of a local or global data store data variable for all the
steps in a simulation. Data store logging is useful for:

• Model debugging – view the order of all data store writes

• Confirming a model modification – use the logged data to establish a
baseline for comparing results to identify the impact of a model modification

To log a local data store that you create with a Data Store Memory block:

• Use the new Logging pane of the Block Parameters dialog box for the
Data Store Memory block.

• Enable data store logging with the new Configuration
Parameters > Data Import/Export > Data stores parameter.

To log a data store defined by a Simulink.Signal object, from the MATLAB
command line, set DataLogging (which is a property of the LoggingInfo
property of Simulink.Signal) to 1.

For details, see “Logging Data Stores”. To see an example of logging a global
data store, run the sldemo_mdlref_dsm demo.

Models with No States Now Return Empty Variables
Simulink creates empty variables for state logging (xout) or final state logging
(xfinal), if both of these conditions apply:

• A model has no states.

102

Version 7.5 (R2010a) Simulink® Software

• In the Configuration Parameters > Data Import/Export pane, you
enable the States, Final States, or both parameters (the default is off).

Compatibility Considerations. If you configure your model to return empty
variables when it has no states, then a possible result is that Simulink creates
more variables than it did in previous releases.

Using model variants, running different models in batch mode, tuning models,
or reconfiguring models can produce unexpected results based on the state
values. For example, if you simulate a model that produces a state value, and
then run a model variant that produces no state, Simulink overwrites the
state value with an empty variable. If your model depends on the first state
value not being overwritten if no state is returned in a subsequent simulation
(which was the case in previous releases), then you get unexpected results.

To File Block Enhancements
The To File block now supports:

• Saving very large data sets that may be too large to fit in RAM

• Saving logged data up until the point of a premature ending of simulation
processing. Previously, if the simulation processing did not complete, then
To File did not store any logged data for that simulation.

• A new Save format parameter to control whether the block uses
Timeseries or array format for data.

- Use Timeseries format for writing multidimensional, real, or complex
inputs, with different data types, (for example, built-in data types,
including Boolean; enumerated (enum) data and fixed-point data with a
word length of up to 32 bits.

- Use Array format only for one-dimensional, double, noncomplex inputs.
Time values are saved in the first row. Additional rows correspond to
input elements.

103

Simulink® Release Notes

Compatibility Considerations. For data saved using MAT file versions
prior to 7.3, the From File block can only load two-dimensional arrays
consisting of one-dimensional, double, noncomplex samples. To load data
of any other type, complexity, or dimension, use a Timeseries object and
save the file using MAT file version 7.3 or later. For example, use 'save
file_name -v7.3 timeseries_object':

save file_name -v7.3 timeseries_object

From File Block Enhancements
The From File block now supports:

• Incremental loading of very large data sets that may be too large to fit
in RAM

• Built-in data types, including Boolean

• Fixed-point data with a word length of up to 32 bits

• Complex data

• Multidimensional data

Root Inport Support for Fixed-Point Data Contained in a
Structure
You can now use a root (top-level) Inport block to supply fixed-point data that
is contained in a structure.

In releases before R2010a, you had to use a Simulink.Timeseries object
instead of a structure.

Simulink Signal Management

Enhanced Support for Proper Use of Bus Signals
To improve model reliability and robustness, avoid mixing Mux blocks and
bus signals. To help you use Mux blocks and bus signals properly, R2010a
adds these enhancements:

104

Version 7.5 (R2010a) Simulink® Software

• When Simulink detects Mux block and bus signal mixtures, the “Mux
blocks used to create bus signals” diagnostic now generates:

- A warning when all the following conditions apply:

• You load a model created in a release before R2010a.

• The diagnostic is set to 'None'.

• Simulink detects improper Mux block usage.

- An error for new models

• Two new diagnostics in the Configuration Parameters > Diagnostics >
Connectivity pane:

- The “Non-bus signals treated as bus signals” diagnostic detects when
Simulink implicitly converts a non-bus signal to a bus signal to support
connecting the signal to a Bus Assignment or Bus Selector block.

- The “Repair bus selections” diagnostic repairs broken selections in the
Bus Selector and Bus Assignment block parameters dialog boxes that
are due to upstream bus hierarchy changes.

Compatibility Considerations. In R2010a, if you load a model created in a
prior release, you might get warning messages that you did not get before. To
avoid getting Mux block-related warnings for existing models that you want
to load in R2010a, use the slreplace_mux function to substitute Bus Creator
blocks for any Mux blocks used to create buses signals.

Bus Initialization
In releases before R2010a:

• For virtual buses, you could specify a non-zero scalar or vector initial
condition (IC) value that applies to all elements of the bus. You could use a
vector value only if all bus elements use the same data type.

• For nonvirtual buses, the only value you could specify was zero.

In R2010a, you can create a MATLAB structure for an IC. You can:

• Specify ICs for all or a subset of the bus elements.

105

Simulink® Release Notes

• Use the new Simulink.Bus.createMATLABStruct helper method to create
a full IC structure.

• Use the new Model Advisor Simulink check, Check for partial structure
parameter usage with bus signals, to detect when structure parameters
are not consistent in shape with the associated bus signal.

Using IC structures helps you to:

• Specify nonzero initial conditions

• Specify initial conditions for mixed-dimension signals

• Apply a different IC for each signal in the bus

• Specify ICs for a subset of signals in a bus without specifying ICs for all
the signals

• Use the same ICs for multiple blocks, signals, or models

For information about creating and using initial condition structures, see
“Specifying Initial Conditions for Bus Signals”.

S-Functions for Working with Buses
The following S-functions provide a programmatic interface for working
with buses:

S-function Description

ssGetBusElementComplexSignal Get the signal complexity for a bus
element.

ssGetBusElementDataType Get the data type identifier for a bus
element.

ssGetBusElementDimensions Get the dimensions of a bus element.

ssGetBusElementName Get the name of a bus element.

ssGetBusElementNumDimensions Get the number of dimensions for a
bus element.

ssGetBusElementOffset Get the offset from the start of the
bus data type to a bus element.

106

Version 7.5 (R2010a) Simulink® Software

S-function Description

ssGetNumBusElements Get the number of elements in a bus
signal.

ssGetSFcnParamName Get the value of a block parameter
for an S-function block.

ssIsDataTypeABus Determine whether a data type
identifier represents a bus signal.

ssRegisterTypeFromParameter Register a data type that a
parameter in the Simulink data type
table specifies.

ssSetBusInputAsStruct Specify whether to convert the input
bus signal for an S-function from
virtual to nonvirtual.

ssSetBusOutputAsStruct Specify whether the output bus
signal from an S-function must be
virtual or nonvirtual.

ssSetBusOutputObjectName Specify the name of the bus object
that defines the structure and type
of the output bus signal.

Command Line API for Accessing Information About Bus
Signals
You can use two new signal property parameters to get information about the
type and hierarchy of a signal programmatically:

• CompiledBusType

- Returns information about whether the signal connected to a port is a
bus, and if so, whether it is a virtual or nonvirtual bus

• SignalHierarchy

- Returns the signal name of the signal. If the signal is a bus, the
parameter also returns the hierarchy and names of the bus signal.

See “Model Parameters” and “Getting Information about Buses”.

107

Simulink® Release Notes

Signal Name Propagation for Bus Selector Block
The new SignalNameFromLabel port parameter supports signal name
propagation for Bus Creator block input signals whenever you change the
name of an input signal programmatically. You can set this parameter with
the set_param command, specifying either a port or line handle and the
signal name to propagate.

See “Model Parameters”.

Block Enhancements

New Square Root Block
You can use the new Sqrt block to perform square-root calculations. This
block includes the following functions:

Function Icon

sqrt

signedSqrt

rSqrt

Compatibility Considerations. The sqrt and 1/sqrt functions no longer
appear in the Math Function block. For backward compatibility, models
with a Math Function block that uses one of these two functions continue
to work. However, consider running the slupdate function on your model.
slupdate replaces any Math Function block that uses sqrt or 1/sqrt with an
equivalent Sqrt block that ensures the same behavior.

New Second-Order Integrator Block
You can use the new Second-Order Integrator block to model second-order
systems that have bounds on their states. This block is useful for modeling

108

Version 7.5 (R2010a) Simulink® Software

physical systems, for example, systems that use Newton’s Second Law and
have constraints on their motion.

Benefits of using this block include:

• Highly accurate results

• Efficient detection of zero crossings

• Prevention of direct feedthrough and algebraic loops

New Find Nonzero Elements Block
You can use the new Find block to locate all nonzero elements of an input
signal. This block outputs the indices of nonzero elements in linear indexing
or subscript form and provides these benefits:

When you use the block to... You can...

Convert logical indexing to linear
indexing

Use the linear indices you get
from processing a logical indexing
signal as the input to a Selector or
Assignment block

Extract subscripts of nonzero values Use the subscript of matrices for 2-D
or higher-dimensional signal arrays
to aid with image processing

Represent sparse signals Use indices and values as a compact
representation of sparse signals

PauseFcn and ContinueFcn Callback Support for Blocks and
Block Diagrams
The new PauseFcn and ContinueFcn callbacks detect clicking of the Pause
and Continue buttons during simulation. You can set these callbacks using
the set_param command or the Callbacks tab of the Model Properties dialog
box. Both the PauseFcn and ContinueFcn callbacks support Normal and
Accelerator simulation modes.

109

Simulink® Release Notes

Gain Block Can Inherit Parameter Data Type from Gain Value
The Gain block now supports the Parameter data type setting of Inherit:
Inherit from 'Gain'. This enhancement provides the benefit of inheriting
the parameter data type directly from the Gain parameter. For example:

If you set Gain to... The parameter data type
inherits...

2 double

single(2) single

int8(2) int8

Direct Lookup Table (n-D) Block Enhancements
The Direct Lookup Table (n-D) block now supports:

• Multidimensional signals for the table input port

• Fixed-point data types for the table input port

• Explicit specification of the table data type in the block dialog box

Multiport Switch Block Allows Explicit Specification of Data
Port Indices
The icon for the Multiport Switch block now shows the values of indices on
data port labels. This enhancement helps you identify the data inputs without
having to open the block dialog box:

110

Version 7.5 (R2010a) Simulink® Software

Block Parameter Settings Block Icon

When you load existing models that contain the Multiport Switch block, the
following parameter mapping occurs:

111

Simulink® Release Notes

Block Parameter Settings of a
Model from R2009b or Earlier

Block Parameter Settings When
You Load the Model in R2010a

The following command-line parameter mapping applies:

Old Prompt on
Block Dialog Box

New Prompt on
Block Dialog Box

Old Command-Line
Parameter

New
Command-Line
Parameter

Number of inputs Number of data
ports

Inputs Same

Use zero-based
indexing

Data port order zeroidx DataPortOrder

The parameter mapping in R2010a ensures that you get the same block
behavior as in previous releases.

Compatibility Considerations. In R2010a, a warning appears at compile
time when your model contains a Multiport Switch block with the following
configuration:

• The control port uses an enumerated data type.

• The data port order is contiguous.

112

Version 7.5 (R2010a) Simulink® Software

During edit time, the block icon cannot show the mapping of each data port to
an enumerated value. This configuration can also lead to unused ports during
simulation and unused code during Real-Time Workshop code generation.

Run the slupdate function on your model to replace each Multiport Switch
block of this configuration with a block that explicitly specifies data port
indices. Otherwise, your model might not work in a future release.

In R2010a, the following Multiport Switch block configuration also produces
a warning at compile time:

• The control port uses a fixed-point or built-in data type.

• The data port order is contiguous.

• At least one of the contiguous data port indices is not representable with
the data type of the control port.

The warning alerts you to unused ports during simulation and unused code
during Real-Time Workshop code generation.

Trigonometric Function Block Supports CORDIC Algorithm and
Fixed-Point Data Types
When you select sin, cos, or sincos for the Trigonometric Function block,
additional parameters are available.

New Block
Parameter

Purpose Benefit

Approximation
method

Specify the type of
approximation the
block uses to compute
output: None or CORDIC.

Enables you to use
a faster method of
computing block output
for fixed-point and HDL
applications.

Number of iterations For the CORDIC
algorithm, specify
how many iterations to
use for computing block
output.

Enables you to adjust
the precision of your
block output.

113

Simulink® Release Notes

This block now supports fixed-point data types when you select sin, cos, or
sincos and set Approximation method to CORDIC.

Enhanced Block Support for Enumerated Data Types
The following Simulink blocks now support enumerated data types:

• Data Type Conversion Inherited

• Data Type Duplicate

• Interval Test

• Interval Test Dynamic

• Probe (input only)

• Relay (output only)

• Unit Delay Enabled

• Unit Delay Enabled Resettable

• Unit Delay Resettable

• Unit Delay With Preview Enabled

• Unit Delay With Preview Enabled Resettable

• Unit Delay With Preview Enabled Resettable External RV

• Unit Delay With Preview Resettable

• Unit Delay With Preview Resettable External RV

For more information, see “Enumerations and Modeling” in the Simulink
User’s Guide.

Lookup Table Dynamic Block Supports Direct Selection of
Built-In Data Types for Outputs
In R2010a, you can select the following data types directly for the Output
data type parameter of the Lookup Table Dynamic block:

• double

• single

114

Version 7.5 (R2010a) Simulink® Software

• int8

• uint8

• int16

• uint16

• int32

• uint32

• boolean

Previously, you had to enter an expression for Output data type to specify
a built-in data type.

Compare To Zero and Wrap To Zero Blocks Now Support
Parameter Overflow Diagnostic
If the input data type to a Compare To Zero or Wrap To Zero block
cannot represent zero, detection of this parameter overflow occurs. In the
Diagnostics > Data Validity pane of the Configuration Parameters dialog
box, set Parameters > Detect overflow to warning or error.

Data Type Duplicate Block Enhancement
The Data Type Duplicate block is now a built-in block. Previously, this block
was a masked S-Function. The read-only BlockType parameter has changed
from S-Function to DataTypeDuplicate.

Compatibility Considerations. In R2010a, signal propagation might
behave differently from previous releases. As a result, your model might
not compile under these conditions:

• Your model contains a Data Type Duplicate block in a source loop.

• Your model has underspecified signal data types.

If your model does not compile, set data types for signals that are not fully
specified.

115

Simulink® Release Notes

Lookup Table and Lookup Table (2-D) Blocks To Be Deprecated
in a Future Release
In a future release, the Lookup Table and Lookup Table (2-D) blocks will no
longer appear in the Simulink Library Browser. Consider replacing instances
of those two blocks by using 1-D and 2-D versions of the Lookup Table (n-D)
block. Among other enhancements, the Lookup Table (n-D) block supports the
following features that the other two blocks do not:

• Specification of parameter data types different from input or output signal
types

• Reduced memory use and faster code execution for evenly spaced
breakpoints that are nontunable

• Fixed-point data types with word lengths up to 128 bits

• Specification of index search method

• Specification of action for out-of-range inputs

116

Version 7.5 (R2010a) Simulink® Software

To upgrade your model:

Step Description Reason

1 Run the Simulink Model Advisor
check for “Check model, local
libraries, and referenced models
for known upgrade issues”.

Identify blocks that do not have
compatible settings with the
Lookup Table (n-D) block.

2 For each block that does not have
compatible settings with the
Lookup Table (n-D) block:

• Decide how to address each
warning.

• Adjust block parameters as
needed.

Modify each Lookup Table or
Lookup Table (2-D) block to make
them compatible.

3 Repeat steps 1 and 2 until you
are satisfied with the results of
the Model Advisor check.

Ensure that block replacement
works for the entire model.

4 Run the slupdate function on
your model.

Perform block replacement with
the Lookup Table (n-D) block.

Compatibility Considerations. The Model Advisor check groups all Lookup
Table and Lookup Table (2-D) blocks into three categories:

• Blocks that have compatible settings with the Lookup Table (n-D) block

• Blocks that have incompatible settings with the Lookup Table (n-D) block

• Blocks that have repeated breakpoints

Blocks with Compatible Settings

When a block has compatible parameter settings with the Lookup Table
(n-D) block, automatic block replacement can occur without backward
incompatibilities.

117

Simulink® Release Notes

Parameter Settings in the Lookup Table (n-D)
Block After Block Replacement

Lookup Method in the
Lookup Table or Lookup
Table (2-D) Block Interpolation Extrapolation

Interpolation-Extrapolation Linear Linear

Interpolation-Use End
Values

Linear None-Clip

Use Input Below None-Flat Not applicable

Depending on breakpoint characteristics, the Lookup Table (n-D) block uses
one of two index search methods.

Breakpoint Characteristics in the Lookup
Table or Lookup Table (2-D) Block

Index Search Method in the Lookup Table
(n-D) Block After Block Replacement

Not evenly spaced Binary search

Evenly spaced and tunable

Evenly spaced and nontunable

A prompt appears, asking you to select Binary
search or Evenly spaced points.

The Lookup Table (n-D) block also adopts other parameter settings from the
Lookup Table or Lookup Table (2-D) block. For parameters that exist only
in the Lookup Table (n-D) block, the following default settings apply after
block replacement:

Lookup Table (n-D) Block Parameter Default Setting After Block Replacement

Breakpoint data type Inherit: Same as corresponding input

Action for out-of-range input None

Blocks with Incompatible Settings

When a block has incompatible parameter settings with the Lookup Table
(n-D) block, the Model Advisor shows a warning and a recommended action,
if applicable.

• If you perform the recommended action, you can avoid incompatibility
during block replacement.

118

Version 7.5 (R2010a) Simulink® Software

• If you use automatic block replacement without performing the
recommended action, you might see numerical differences in your results.

Incompatibility Warning Recommended Action What Happens for
Automatic Block
Replacement

The Lookup Method is Use
Input Nearest or Use Input
Above. The Lookup Table
(n-D) block does not support
these lookup methods.

Change the lookup method to
one of the following:

• Interpolation -
Extrapolation

• Interpolation - Use End
Values

• Use Input Below

The Lookup Method
is Interpolation -
Extrapolation, but the
input and output are not
the same floating-point
type. The Lookup Table
(n-D) block supports linear
extrapolation only when all
inputs and outputs are the
same floating-point type.

Change the extrapolation
method or the port data types
of the block.

The Lookup Method changes
to Interpolation - Use End
Values.

In the Lookup Table (n-D)
block, this setting corresponds
to:

• Interpolation set to
Linear

• Extrapolation set to
None-Clip

You also see a message that
explains possible numerical
differences.

The block uses small
fixed-point word lengths,
so that interpolation uses only
one rounding operation. The
Lookup Table (n-D) block uses
two rounding operations for
interpolation.

None You see a message that
explains possible numerical
differences.

Blocks with Repeated Breakpoints

When a block has repeated breakpoints, the Model Advisor recommends that
you change the breakpoint data and rerun the check. You cannot perform
automatic block replacement for blocks with repeated breakpoints.

119

Simulink® Release Notes

Elementary Math Block Now Obsolete
The Elementary Math block is now obsolete. You can replace any instance
of this obsolete block in your model by using one of these blocks in the Math
Operations library:

• Math Function

• Rounding Function

• Trigonometric Function

Compatibility Considerations. If you open a model that contains an
Elementary Math block, a warning message appears. This message suggests
running slupdate on your model to replace each instance of the obsolete
block with an appropriate substitute.

If you try to start simulation or generate code for a model that contains this
obsolete block, an error message appears.

DocBlock Block RTF File Compression
In R2010a, when you add or modify a DocBlock block that uses Microsoft®

RTF format and you save the model, Simulink compresses the RTF file. The
saved RTF files with images are much smaller than in previous releases.

Compatibility Considerations. In R2010a, if you use slupdate or save a
model that includes a DocBlock block that uses RTF format, you cannot run
the model in an earlier version of Simulink.

To run a model that has a compressed RTF file in an earlier version of
Simulink, use Save As to save the model in the format of the earlier release.

Simulink Extras PID Controller Blocks Deprecated
In R2010a, the PID Controller (with Approximate Derivative) and PID
Controller blocks of the Simulink Extras library no longer appear in the
Simulink Library Browser. For models created using R2009b or earlier,
consider using the slupdate function to replace these blocks with the new
PID Controller block of the Simulink/Continuous or Simulink/Discrete library.
Among other enhancements, the new PID Controller block supports:

120

Version 7.5 (R2010a) Simulink® Software

• Continuous-time and discrete-time modeling

• Ideal and Parallel controller forms

• Automatic PID tuning (requires a Simulink® Control Design™ license)

For more information, see the PID Controller and PID Controller (2 DOF)
block reference pages.

Compatibility Considerations. For backward compatibility, simulation and
code generation of models that contain the deprecated PID Controller (with
Approximate Derivative) or PID Controller block continue to work.

User Interface Enhancements

Model Explorer Column Views
The Model Explorer now supports column views, which specify sets of property
columns to display in the Contents pane. The Model Explorer displays
only the properties that are defined for the current column view. The Model
Explorer does not add new properties dynamically as you add objects to the
Contents pane. Using a defined subset of properties to display streamlines
the task of exploring and editing model object properties and increases the
density of the data displayed.

Model Explorer provides several standard column views with common
property sets. You can:

• Select the column view based on the task you are performing

• Customize the standard column views

• Create your own column views

• Export and import column views saved in MAT-files, which you can share
with other users

See “The Model Explorer: Controlling Contents Using Views”.

Compatibility Considerations. Column views replace the Customize
Contents option provided in previous releases.

121

Simulink® Release Notes

In R2010a, the Model Explorer provides a different interface for performing
some of the tasks that you previously performed using View menu items. The
following table summarizes differences between R2009b and R2010a.

R2009b View Menu Item R2010a Model Explorer
Interface Change

Dialog View Replaced by Show Dialog Pane

Customize Contents Replaced by Column View > Show
Details

Show Properties Eliminated; select Column
View > Show Details to specify
properties to display

Mark Nonexistent Properties Replaced by Show Nonexistent
Properties as'-'

Library Browser Eliminated (you can access the
Library Browser from the Simulink
Editor View menu)

List View Options Replaced by Row Filter

Model Explorer Display of Masked Subsystems and Linked
Library Subsystems
The Model Explorer now contains global options for specifying whether the
Model Explorer displays the contents of library links and masked subsystems.
These options also control whether the Model Hierarchy pane displays
linked or masked subsystems. See “Displaying Masked Subsystems”and
“Displaying Linked Library Subsystems”.

Compatibility Considerations. In R2010a, when you select a masked
subsystem node in theModel Hierarchy pane, the Contents pane displays
the objects of the subsystem, reflecting the global setting to display masked
subsystems. In prior releases, if you selected a masked subsystem node, you
needed to right-click the node and select Look Under Mask to view the
subsystem objects in the Contents pane.

In R2010a, the search results reflect the Show Library Links and Show
Masked Subsystems settings. In previous releases, you specified the Look

122

Version 7.5 (R2010a) Simulink® Software

Inside Masked Subsystems and Look Inside Linked Subsystems options
as part of the search options. R2010a does not include those search options.

Model Explorer Object Count
The top-right section of the Contents pane displays a count of objects found
for the currently selected nodes in the Model Hierarchy pane. The count
indicates the number of objects displayed in the Contents pane, compared to
the total number of objects in the currently selected nodes. The number of
displayed objects is less than the total number of objects in scope when you
filter some objects by using View > Row Filter options. See “Object Count”.

Model Explorer Search Option for Variable Usage
You can use the new for Variable Usage search type to search for blocks
that use a variable that is defined in the base or model workspaces. See
“Search Bar Controls”.

Model Explorer Display of Signal Logging and Storage Class
Properties
The Model Explorer Contents pane displays the following additional
properties for signal lines:

• Signal logging-related properties (such as DataLogging)

• Storage class properties, including properties associated with custom
storage classes for signals

Displaying these properties in the Contents pane enables batch editing.
Prior to R2010a, you could edit these properties only in the Signal Properties
dialog box.

Model Explorer Column Insertion Options
In R2010a, right-clicking on a column heading in the Contents pane provides
two new column insertion options:

• Insert Path – adds the Path property column to the right of the selected
column.

123

Simulink® Release Notes

• Insert Recently Hidden Columns – selects a property from a list of
columns you recently hid, to add that property column to the right of the
selected column

See “Adding Property Columns”.

Diagnostics for Data Store Memory Blocks
The Model Advisor ’By Task’ folder now contains a Data Store Memory Blocks
subfolder. This subfolder contains checks relating to Data Store Memory
blocks that examine your model for:

• Multitasking, strong typing, and shadowing issues

• An enabled status of the read/write diagnostics

• Read/write issues

New Command-Line Option for RSim Targets
A new h command-line option allows you to print a summary of the available
options for RSim executable targets.

Simulink.SimulationOutput.get Method for Obtaining
Simulation Results
The Simulink.SimulationOutput class now has a get method. After
simulating your model, you can use this method to access simulation results
from the Simulink.SimulationOutput object.

Simulink.SimState.ModelSimState Class has New snapshotTime
Property
The Simulink.SimState.ModelSimState class has a new snapshotTime
property. You can use this property to access the exact time at which
Simulink took a “snapshot” of the simulation state (SimState) of your model.

Simulink.ConfigSet.saveAs to Save Configuration Sets
The saveAs method is added to the Simulink.ConfigSet class to allow you
to easily save the settings of configuration sets as MATLAB functions or
scripts. Using the MATLAB function or script, you can share and archive

124

Version 7.5 (R2010a) Simulink® Software

model configuration sets. You can also compare the settings in different
configuration sets by comparing the MATLAB functions or scripts of the
configuration sets.

For details, see “Save a Configuration Set” in the Simulink User’s Guide.

S-Functions

Building C MEX-Files from Ada and an Example Ada Wrapper
In an R2008b release note, MathWorks announced that support for Ada
S-functions in Simulink would be removed in a future release and a migration
strategy would be forthcoming.

In this release, the addition of Technical Note 1821 facilitates your
incorporating Ada code into Simulink without using Ada S-function support.
This note, “Developing and Building Ada S-Functions for Simulink”, is
available at Technical Note 1821 and demonstrates:

• How to build a C MEX S-function from Ada code without using the mex
ada command

• An example of an Ada wrapper around a C MEX S-Function API

New S-Function API Checks for Branched Function-Calls
A new S-function API, ssGetCallSystemNumFcnCallDestinations, allows
you to determine the number of function-call blocks that your S-function calls.
Based on this returned number, you can then deduce whether or not your
S-function calls a branched function-call.

You can call this SimStruct function from mdlSetWorkWidths or later in
your S-function.

New C MEX S-Function API and M-File S-Function Flag for
Compliance with For Each Subsystem
To allow a C MEX S-function to reside inside of a For Each Subsystem block,
you must call the new ssSupportsMultipleExecInstances API and set the
flag to true in the mdlSetWorkWidths method.

125

http://www.mathworks.com/support/tech-notes/1800/1821.html

Simulink® Release Notes

As for M-file S-functions, you must set the new flag
block.SupportsMultipleExecInstances to true in the Setup section.

Legacy Code Tool Enhanced to Support Enumerated Data Types
and Structured Tunable Parameters
The Legacy Code Tool has been enhanced to support

• Enumerated data types for input, output, parameters, and work vectors

• Structured tunable parameters

For more information about data types that the Legacy Code Tool supports,
see “Supported Data Types”. For more information about the Legacy Code
Tool, see

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Writing S-Functions documentation

• legacy_code function reference page

Compatibility Considerations. For enumerated data type support:

• If you upgrade from R2008b or later release, you can continue to compile
the S-function source code and continue to use the compiled output from
an earlier release without recompiling the code.

• If you upgrade from R2008a or earlier release, you cannot use enumerated
types; the Simulink engine will display an error during simulation.

You cannot use tunable structured parameters with Legacy Code Tool in a
release prior to R2010a.

Documentation Improvements

Modeling Guidelines for High-Integrity Systems
MathWorks intends the “Modeling Guidelines for High-Integrity Systems”
document to be for engineers developing models and generating code for
high-integrity systems using Model-Based Design with MathWorks products.
This document describes creating Simulink models that are complete,

126

Version 7.5 (R2010a) Simulink® Software

unambiguous, statistically deterministic, robust, and verifiable. The
document focus is on model settings, block usage, and block parameters that
impact simulation behavior or code generated by the Real-Time Workshop
Embedded Coder product.

These guidelines do not assume that you use a particular safety or certification
standard. The guidelines reference some safety standards where applicable,
including DO-178B, IEC 61508, and MISRA C®.

You can use the Model Advisor to support adhering to these guidelines. Each
guideline lists the checks that are applicable to that guideline.

For more information, see “Modeling Guidelines for High-Integrity Systems”
in the Simulink documentation.

MathWorks Automotive Advisory Board Control Algorithm
Modeling Guidelines Using MATLAB, Simulink, and Stateflow
Included in Help
MathWorks Automotive Advisory Board (MAAB) involves major automotive
original equipment manufacturers (OEMs) and suppliers in the process of
evolving MathWorks controls, simulation, and code generation products,
including the Simulink, Stateflow, and Real-Time Workshop products. An
important result of the MAAB has been the “MathWorks Automotive Advisory
Board Control Algorithm Modeling Guidelines Using MATLAB, Simulink,
and Stateflow.” Help for the Simulink product now includes these guidelines.
The MAAB guidelines link to relevant Model Advisor MAAB check help and
MAAB check help links to relevant MAAB guidelines.

For more information, see “MathWorks Automotive Advisory Board Control
Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow” in
the Simulink documentation.

127

http://www.mathworks.com/industries/aerospace/standards/do-178b.html
http://www.mathworks.com/industries/auto/standards/iec-61508.html
http://www.mathworks.com/industries/aerospace/standards/misra-c.html

Simulink® Release Notes

Version 7.4.1 (R2009bSP1) Simulink Software
This table summarizes what’s new in V7.4.1 (R2009bSP1):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

No No Bug Reports
Includes fixes

128

http://www.mathworks.com/support/bugreports/?product=SL&release=R2009bSP1
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009bSP1

Version 7.4 (R2009b) Simulink® Software

Version 7.4 (R2009b) Simulink Software
This table summarizes what’s new in V7.4 (R2009b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 129

• “Component-Based Modeling” on page 131

• “Variable-Size Signals” on page 134

• “Embedded MATLAB Function Blocks” on page 135

• “Simulink Data Management” on page 136

• “Simulink File Management” on page 139

• “Block Enhancements” on page 139

• “User Interface Enhancements” on page 149

Simulation Performance

Single-Output sim Syntax
An enhanced sim command provides for greater ease of use and for
greater compatibility with parfor loops. Since the command now saves all
simulation results to a single object, the management of output variables is
straightforward for all cases, including parallel computing.

129

http://www.mathworks.com/support/bugreports/?product=SL&release=R2009b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009b

Simulink® Release Notes

Expanded Support by Rapid Accelerator
Simulink Rapid Accelerator mode now supports root inputs of enumerated
data type and fixed-point parameters of any word length.

SimState Support in Accelerator Mode
Simulink Accelerator mode now supports the SimState feature. You can
therefore save the simulation state and later resume the simulation from
the exact save time.

Integer Arithmetic Applied to Sample Hit Computations
For fixed-step simulations, Simulink now computes sample time hits using
integer arithmetic. This modification improves the timing resolution of
sample hits of multirate models.

Compatibility Considerations. Previously, if an S-function had two
rates, and if (ssIsSampleHit(S, idx1) == true && ssIsSampleHit(S,idx2)
== true, then Simulink would adjust the task times to be evaluated as
ssGetTaskTime(S, idx1) == ssGetTaskTime(S, idx2). Simulink no longer
forces this equality; instead, Simulink now leaves the individual task times to
be integer multiples of their corresponding periods. Consequently, existing
code with logic that relies upon the equality of the task times needs to be
updated.

In addition, the behavior of the command get_param(model, ’SimulationTime’)
is now different. Instead of returning the time of the next known sample hit
at the bottom of the current step, this command now returns the current time.

Improved Accuracy of Variable-Step Discrete Solver
For variable-step discrete simulation of purely discrete models, where the
fundamental step size is the same as the fastest discrete rate, Simulink now
uses the specified start and stop times.

130

Version 7.4 (R2009b) Simulink® Software

Compatibility Considerations. Previously, if the fundamental step size was
equal to the fastest discrete rate, the Simulink simulation did not uniformly
honor the user-specified start and stop times. Specifically, if the start and
stop times were not exact multiples of the fundamental step size, then the
start time was adjusted to the time of the first sample time hit and the
simulation stopped at the sample time hit just before the specified stop time.
However, if the simulation was required to hit certain time points (either by
specifying TSPAN in the sim command such as ’sim(’Model_A’,[0 10])’, or via
the OutputTimes parameter), then the start and stop times were not adjusted

Now Simulink variable-step simulation of purely discrete models consistently
honors the user-specified start and stop times, irrespective of whether the
fastest discrete sample time is the GCD of all of the other sample times

Component-Based Modeling

Enhanced Library Link Management
In R2009b, improved library link management (Links Tool) facilitates
visualizing and restoring edited library links. See “Working with Library
Links” for more information.

Enhanced Mask Editor Provides Tabs and Signal Attributes
You can use the R2009b Mask Editor to create a mask that has tabbed panes,
and define the same signal attribute specifications in a mask that built-in
Simulink blocks provide. See “Working with Block Masks” , “Simulink Mask
Editor”and “Mask Icon Drawing Commands”for more information.

Model Reference Variants
Model reference variants allow you to configure any Model block to select
its referenced model from a set of candidate models. The selection occurs
when you compile the model that contains the Model block, and depends on
the values of one or more MATLAB variables or Simulink parameters in
the base workspace. To configure a Model block to select the model that it
references, you:

• Provide a set of Boolean expressions that reference base workspace values.

131

Simulink® Release Notes

• Associate each expression with one of the models that the block could
reference.

When you compile the model, Simulink evaluates all the expressions. Each
Model block that uses model reference variants then selects the candidate
model whose associated expression is true, and ignores all the other models.
Compilation then proceeds exactly as if you had entered the name of the
selected model literally in the Model block’s Model name field.

You can nest Model blocks that use variants to any level, allowing you to
define any number of arbitrarily complex customized models within a single
framework. No matter how many simulation environments you define,
selecting one requires only setting variable or parameter values appropriately
in the base workspace. See “Setting Up Model Variants” for more information.

Protected Referenced Models
A protected model is a referenced model from which all block and line
information has been eliminated. Protecting a model does not use encryption
technology. A protected model can be distributed without revealing the
intellectual property that it embodies. The model is said to run in Protected
mode, and gives the same results that its source model does when run in
Accelerator mode.

You can use a protected model much as you could any referenced model that
executes in Accelerator mode. Simulink tools work with protected models
to the extent possible given that the model’s contents are obscured. For
example, the Model Explorer and the Model Dependency Viewer show the
hierarchy under an ordinary referenced model, but not under a protected
model. Signals in a protected model cannot be logged, because the log could
reveal information about the protected model’s contents.

When a referenced model requires object definitions or tunable parameters
that are defined in the MATLAB base workspace, the protected version of the
model may need some or all of those same definitions when it executes as part
of a third-party model. Simulink provides techniques for identifying and
obtaining the needed data. You can use the Simulink Manifest Tools or other
techniques to package the model and any data for delivery.

132

Version 7.4 (R2009b) Simulink® Software

Protecting a model requires a Real-Time Workshop license, which makes
code generation capabilities available for use internally when creating the
protected version of the model. The receiver of a protected model does not need
a Real-Time Workshop license to use the model, and cannot use Real-Time
Workshop to generate code for the model or any model that references it.

To accommodate protected models, the Model block now accepts a suffix in the
Model name field. This suffix can be .mdl for an unprotected model or .mdlp
for a protected model. If the suffix is omitted, Model block first searches the
MATLAB path for a block with the specified name and the suffix .mdl. If that
search fails, the block searches the path for a model with the suffix .mdlp.

The Model block now has a field named ProtectedModel, a boolean
that indicates whether the referenced model is protected, and three
fields for representing the name of the referenced model in different
formats: ModelNameDialog, ModelName, and ModelFile. See the Model
block parameters in “Ports & Subsystems Library Block Parameters” for
information about these parameters. For more information about protecting
models, see “Protecting Referenced Models”.

Simulink Manifest Tools
Enhanced Simulink Manifest Tools now discover and analyze model variants,
protected models, and Simscape files.

New manifest analysis options for controlling whether to report file
dependency locations for user files, all files, or no files. For example, you may
not want to view the file locations of all the dependencies on MathWorks
products. This is typical if your main use of Simulink Manifest Tools is to
discover and package all the required files for your model. By not analyzing
file locations, you speed up report creation, and the report is smaller and
easier to navigate. If you need to trace all dependencies to understand why a
particular file or toolbox is required by a model, you can always regenerate
the full report of all files.

The manifest report is enhanced with sortable columns, and now MATLAB
Programs as well as P-files are reported in the manifest if both exist.

For more information, see “Model Dependencies” in the Simulink User’s
Guide.

133

Simulink® Release Notes

S-Function Builder
The S-Function Builder has been enhanced to support bus signals for
managing complex signal interfaces. See Developing S-Functions for more
information.

Variable-Size Signals
New capability that allows signal sizes to change during execution facilitates
modeling of systems with varying environments, resources, and constraints.
For Simulink models that demonstrate using variable-size signals, see
“Working with Variable-Size Signals”

Simulink Support

• Referenced Model

• Simulink Accelerator and Rapid Accelerator

• Bus Signals

• C-mex S-function

• Level-2 M-file S-function

• Simulink Debugger

• Signal Logging and Loading

• Block Run-Time Object

Simulink Block Support
Support for variable-size signal inputs and outputs in over 40 Simulink
blocks including many blocks from the Math Operations library. For a list of
Simulink blocks, see “Simulink Block Support for Variable-Size Signals”

134

Version 7.4 (R2009b) Simulink® Software

Embedded MATLAB Function Blocks

Support for Variable-Size Arrays and Matrices
Embedded MATLAB Function blocks now support variable-size arrays and
matrices with known upper bounds. With this feature, you can define inputs,
outputs, and local variables to represent data that varies in size at runtime.

Change in Text and Visibility of Parameter Prompt for Easier
Use with Fixed-Point Advisor and Fixed-Point Tool
The Lock output scaling against changes by the autoscaling tool check
box is now Lock data type setting against changes by the fixed-point
tools. Previously, this check box was visible only if you entered an expression
or a fixed-point data type, such as fixdt(1,16,0). This check box is now
visible for any data type specification. This enhancement enables you to lock
the current data type settings on the dialog box against changes that the
Fixed-Point Advisor or Fixed-Point Tool chooses.

New Compilation Report for Embedded MATLAB Function
Blocks
The new compilation report provides compile-time type information for the
variables and expressions in your Embedded MATLAB functions. This
information helps you find the sources of error messages and understand
type propagation issues, particularly for fixed-point data types. For more
information, see “Working with MATLAB Function Reports” in the Simulink
User’s Guide.

Compatibility Considerations. The new compilation report is not
supported by the MATLAB internal browser on Sun™ Solaris™ 64-bit
platforms. To view the compilation report on Sun Solaris 64-bit platforms, you
must configure your MATLAB Web preferences to use an external browser,
for example, Mozilla Firefox. To learn how to configure your MATLAB Web
preferences, see Web Preferences in the MATLAB documentation.

New Options for Controlling Run-time Checks for Faster
Performance
In simulation, the code generated for Embedded MATLAB Function blocks
includes various run-time checks. To reduce the size of the generated code,

135

Simulink® Release Notes

and potentially improve simulation times, you can use new Simulation
Target configuration parameters to control whether or not your generated
code performs:

• Integrity checks to detect violations of memory integrity in the generated
code. For more information, see “Ensure memory integrity” in the Simulink
Graphical User Interface.

• Responsiveness checks to periodically check for Ctrl+C breaks and refresh
graphics. For more information, see “Ensure responsiveness” in the
Simulink Graphical User Interface.

Embedded MATLAB Function Blocks Improve Size Propagation
Behavior
Heuristics for size propagation have improved for underspecified models.
During size propagation, Embedded MATLAB Function blocks no longer
provide default sizes. Instead, for underspecified models, Simulink gets
defaults from other blocks that have more size information.

Compatibility Considerations. Certain underspecified models that
previously ran without error may now generate size mismatch errors.
Examples of underspecified models include:

• Models that contain a cycle in which no block specifies output size

• Models that do not specify the size of input ports

To eliminate size mismatch errors:

• Specify sizes for the input ports of your subsystem or model.

• Specify sizes of all ports on at least one block in any loop in your model.

Simulink Data Management

New Function Exports Workspace Variables and Values
The new Simulink.saveVars function can save workspace variables and their
values into a MATLAB file. The file containing the data is human-readable
and can be manually edited. If Simulink cannot generate MATLAB code for a
workspace variable, Simulink.saveVars saves that variable into a companion

136

Version 7.4 (R2009b) Simulink® Software

MAT-file rather than a MATLAB file. Executing the MATLAB file (which also
loads any companion MAT file) restores the saved variables and their values
to the workspace. See Simulink.saveVars for more information.

New Enumerated Constant Block Outputs Enumerated Data
Although the Constant block can output enumerated values, it provides many
block parameters that do not apply to enumerated types, such as Output
minimum and Output maximum. In R2009b, the Sources library includes
the Enumerated Constant block. When you need a block that outputs constant
enumerated values, use Enumerated Constant rather than Constant to avoid
seeing irrelevant block parameters.

Enhanced Switch Case Block Supports Enumerated Data
The Switch Case block now supports enumerated data types for the input
signal and case conditions. For more information, see “Enumerations and
Modeling” and the Switch Case block documentation.

Code for Multiport Switch Block Shows Enumerated Values
In previous releases, generated code for a Multiport Switch block that uses
enumerated data contains the underlying integer for each enumerated
value rather than its name. In R2009b, the code contains the name of each
enumerated value rather than its underlying integer. This change adds
readability and facilitates comparing the code with the model, but has no
effect on the behavior of the code. For more information, see “Enumerations
and Modeling” and Multiport Switch.

Data Class Infrastructure Partially Deprecated
Some classes and properties in the Simulink data class infrastructure have
been deprecated in R2009b. See “Working with Data” for information about
Simulink data classes.

137

Simulink® Release Notes

Compatibility Considerations. If you use any of the deprecated constructs,
Simulink posts a warning that identifies the construct and describes one
or more techniques for eliminating it. The techniques differ depending on
the construct. You can ignore these warnings in R2009b, but MathWorks
recommends making the described changes now because the deprecated
constructs may be removed from future releases, upgrading the warnings
to errors.

Saving Simulation Results to a Single Object
Enhanced sim command that saves all simulation results to a single object for
easier management of simulation results.

Simulation Restart in R2009b
In order to restart an R2009a simulation in R2009b, you should first
regenerate the initial SimState in R2009b.

Compatibility Considerations. The SimState that Simulink saves from a
R2009a simulation might be incompatible with the internal representation of
the same model in R2009b. Simulink detects this incompatibility when the
R2009a SimState is used to restart a R2009b simulation. If the mismatch
resides in the model interface only, then Simulink issues a warning. (You
can use the Simulink diagnostic ‘SimState interface checksum mismatch’ to
turn off such warnings or to direct Simulink to report an error.) However, if
the mismatch resides in the structural representation of the model, then
Simulink reports an error. To avoid these errors and warnings, you need to
regenerate the initial SimState in R2009b.

Removing Support for Custom Floating-Point Types in Future
Release
Support for custom floating-point types, float(TotalBits, ExpBits), will
be removed in a future release.

In R2009b, Simulink continues to process these types.

For more information, see float.

138

Version 7.4 (R2009b) Simulink® Software

Simulink File Management

Removal of Functions
The following functions are no longer available:

• adams.m

• euler.m

• gear.m

• linsim.m

• rk23.m

• rk45.m

Deprecation of SaveAs to R12 and R13
In R2009b, you will no longer be able to use the SaveAs feature to save a
model to releases R12 or R13. You will, however, be able to save models to R12
and R13 using the command-line. In R2010a, the command-line capability
will also be removed.

Improved Behavior of Save_System
When you use the save_system function to save a model to an earlier release,
you will no longer receive a dialog box that indicates that the save was
successful.

Block Enhancements

New Turnkey PID Controller Blocks for Convenient Controller
Simulation and Tuning
You can implement a continuous- or discrete-time PID controller with just
one block by using one of the new PID Controller and PID Controller (2DOF)
blocks. With the new blocks, you can:

• Configure your controller in any common controller configuration, including
PID, PI, PD, P, and I.

139

Simulink® Release Notes

• Tune PID controller gains either manually in the block or automatically
in the new PID Tuner. (PID Tuner requires a Simulink Control Design
license.)

• Generate code to implement your controller using any Simulink data type,
including fixed-point data types (requires a Real-Time Workshop license).

You can set many options in the PID Controller and PID Controller (2DOF)
blocks, including:

• Ideal or parallel controller configurations

• Optional output saturation limit with anti-windup circuitry

• Optional signal-tracking mode for bumpless control transfer and multiloop
controllers

• Setpoint weighting in the PID Controller (2DOF) block

The blocks are available in the Continuous and Discrete libraries. For more
information on using the blocks, see the PID Controller and PID Controller
(2DOF) reference pages. For more information on tuning the PID blocks, see
Automatic PID Tuning in the Simulink Control Design reference pages.

New Enumerated Constant Block Outputs Enumerated Data
Although the Constant block can output enumerated values, it provides many
block parameters that do not apply to enumerated types, such as Output
minimum and Output maximum. In R2009b, the Sources library includes
the Enumerated Constant block. When you need a block that outputs constant
enumerated values, use Enumerated Constant rather than Constant to avoid
seeing irrelevant block parameters.

Enhanced Switch Case Block Supports Enumerated Data
The Switch Case block now supports enumerated data types for the input
signal and case conditions. For more information, see “Enumerations and
Modeling” and the Switch Case block documentation.

Code for Multiport Switch Block Shows Enumerated Values
In previous releases, generated code for a Multiport Switch block that uses
enumerated data contains the underlying integer for each enumerated

140

Version 7.4 (R2009b) Simulink® Software

value rather than its name. In R2009b, the code contains the name of each
enumerated value rather than its underlying integer. This change adds
readability and facilitates comparing the code with the model, but has no
effect on the behavior of the code. For more information, see “Enumerations
and Modeling” and Multiport Switch.

Discrete Transfer Fcn Block Has Performance, Data Type,
Dimension, and Complexity Enhancements
The following enhancements apply to the Discrete Transfer Fcn block:

• Improved numerics and run-time performance of outputs and states by
reducing the number of divide operations in the filter to one

• Support for signed fixed-point and signed integer data types

• Support for vector and matrix inputs

• Support for input and coefficients with mixed complexity

• A new Initial states parameter for entering nonzero initial states

• A new Optimize by skipping divide by leading denominator
coefficient (a0) parameter that provides more efficient implementation
by eliminating all divides when the leading denominator coefficient is one.
This enhancement provides optimized block performance.

Compatibility Considerations. Due to these enhancements, you might
encounter the following compatibility issues:

• Realization parameter removed

The Real-Time Workshop software realization parameter has been
removed from this block. You can no longer use the set_param and
get_param functions on this block parameter. The generated code for this
block has been improved to be similar to the former 'sparse' realization
when the Optimize by skipping divide by leading denominator
coefficient (a0) parameter is selected, while maintaining tunability as in
the former 'general' realization when the parameter is not selected.

• State changes

141

Simulink® Release Notes

Due to the reduction in the number of divide operations that the block
performs, you might notice that your logged states have changed when the
leading denominator coefficient is not one.

Lookup Table (n-D) Block Supports Parameter Data Types
Different from Signal Data Types
The Lookup Table (n-D) block supports breakpoint data types that differ from
input data types. This enhancement provides these benefits:

• Lower memory requirement for storing breakpoint data that uses a smaller
type than the input signal

• Sharing of prescaled breakpoint data between two Lookup Table (n-D)
blocks with different input data types

• Sharing of custom storage breakpoint data in generated code for blocks
with different input data types

The Lookup Table (n-D) block supports table data types that differ from
output data types. This enhancement provides these benefits:

• Lower memory requirement for storing table data that uses a smaller type
than the output signal

• Sharing of prescaled table data between two Lookup Table (n-D) blocks
with different output data types

• Sharing of custom storage table data in generated code for blocks with
different output data types

The Lookup Table (n-D) block also supports separate data type specification
for intermediate results. This enhancement enables use of a higher precision
for internal computations than for table data or output data.

For consistency with other lookup table blocks, the Process out-of-range
input parameter prompt is now Action for out-of-range input.
Similarly, the command-line parameter is now ActionForOutOfRangeInput.
For backward compatibility, the old command-line parameter
ProcessOutOfRangeInput continues to work. The parameter settings also
remain the same: None, Warning, or Error.

142

Version 7.4 (R2009b) Simulink® Software

Reduced Memory Use and More Efficient Code for Evenly
Spaced Breakpoints in Prelookup and Lookup Table (n-D)
Blocks
For the Prelookup and Lookup Table (n-D) blocks, the generated code now
stores only the first breakpoint, spacing, and number of breakpoints when:

• The breakpoint data is nontunable.

• The index search method is Evenly spaced points.

This enhancement reduces memory use and provides faster code execution.
Previously, the code stored all breakpoint values in a set, regardless of the
tunability or spacing of the breakpoints.

The following enhancements also provide more efficient code for the two
blocks:

Block Enhancement for Code Efficiency

Lookup Table (n-D) Removal of unnecessary bit shifts for
calculating the fraction

Prelookup and Lookup Table (n-D) Use of simple division instead of
computation-expensive function
calls for calculating the index and
fraction

Math Function Block Computes Reciprocal of Square Root
The Math Function block now supports a new function for computing the
reciprocal of a square root: 1/sqrt. You can use one block instead of two
separate blocks for this computation, resulting in smaller block diagrams.

You can select one of two methods for computing the reciprocal of a square
root: Exact or Newton-Raphson. Both methods support real input and output
signals. When you use the Newton-Raphson method, you can also specify the
number of iterations to perform the algorithm.

143

Simulink® Release Notes

Math Function Block Enhancements for Real-Time Workshop
Code Generation
The Math Function block now supports Real-Time Workshop code generation
in these cases:

• Complex input and output signals for the pow function, for use with
floating-point data types

• Fixed-point data types with fractional slope and nonzero bias for the
magnitude^2, square, and reciprocal functions

Relational Operator Block Detects Signals That Are Infinite,
NaN, or Finite
The Relational Operator block now includes isInf, isNaN, and isFinite
functions to detect signals that are infinite, NaN, or finite. These new functions
support real and complex input signals. If you select one of these functions,
the block changes automatically to one-input mode.

Changes in Text and Visibility of Dialog Box Prompts for Easier
Use with Fixed-Point Advisor and Fixed-Point Tool
The Lock output scaling against changes by the autoscaling tool
check box is now Lock output data type setting against changes by
the fixed-point tools. Previously, this check box was visible only if you
entered an expression or a fixed-point data type for the output, such as
fixdt(1,16,0). This check box is now visible for any output data type
specification. This enhancement helps you lock the current data type settings
on a dialog box against changes that the Fixed-Point Advisor or Fixed-Point
Tool chooses.

This enhancement applies to the following blocks:

• Abs

• Constant

• Data Store Memory

• Data Type Conversion

• Difference

144

Version 7.4 (R2009b) Simulink® Software

• Discrete Derivative

• Discrete-Time Integrator

• Divide

• Dot Product

• Fixed-Point State-Space

• Gain

• Inport

• Lookup Table

• Lookup Table (2-D)

• Lookup Table Dynamic

• Math Function

• MinMax

• Multiport Switch

• Outport

• Prelookup

• Product

• Product of Elements

• Relay

• Repeating Sequence Interpolated

• Repeating Sequence Stair

• Saturation

• Saturation Dynamic

• Signal Specification

• Switch

The Lock scaling against changes by the autoscaling tool check box is
now Lock data type settings against changes by the fixed-point tools.
Previously, this check box was visible only if you entered an expression or a

145

Simulink® Release Notes

fixed-point data type, such as fixdt(1,16,0). This check box is now visible
for any data type specification. This enhancement helps you lock the current
data type settings on a dialog box against changes that the Fixed-Point
Advisor or Fixed-Point Tool chooses.

This enhancement applies to the following blocks:

• Discrete FIR Filter

• Interpolation Using Prelookup

• Lookup Table (n-D)

• Sum

• Sum of Elements

Direct Lookup Table (n-D) Block Enhancements
The Direct Lookup Table (n-D) block now supports:

• Direct entry of Number of table dimensions

• Entry of Table data using the Lookup Table Editor

Previously, entering an integer greater than 4 for the Number of table
dimensions required editing Explicit number of table dimensions. This
extra parameter no longer appears on the block dialog box. For backward
compatibility, scripts that contain explicitNumDims continue to work.

The other parameters for the block have changed as follows. For backward
compatibility, the old command-line parameters continue to work.

Prompt on Block Dialog
Box

Old Command-Line
Parameter

New Command-Line Parameter

Number of table
dimensions

maskTabDims NumberOfTableDimensions

Inputs select this object
from table

outDims InputsSelectThisObjectFromTable

Make table an input tabIsInput TableIsInput

146

Version 7.4 (R2009b) Simulink® Software

Prompt on Block Dialog
Box

Old Command-Line
Parameter

New Command-Line Parameter

Table data mxTable Table

Action for out-of-range
input

clipFlag ActionForOutOfRangeInput

Sample time samptime SampleTime

The read-only BlockType parameter has also changed from S-Function to
LookupNDDirect.

Compatibility Considerations. In R2009b, signal dimension propagation
can behave differently from previous releases. Your model might not compile
under these conditions:

• A Direct Lookup Table (n-D) block is in a source loop.

• Underspecified signal dimensions exist.

If your model does not compile, set dimensions explicitly for underspecified
signals.

Unary Minus Block Enhancements
Conversion of the Unary Minus block from a masked S-Function to a core
block enables more efficient simulation of the block.

You can now specify sample time for the block. The Saturate to max or min
when overflows occur check box is now Saturate on integer overflow,
and the command-line parameter is now SaturateOnIntegerOverflow. For
backward compatibility, the old command-line parameter DoSatur continues
to work.

The read-only BlockType parameter has also changed from S-Function to
UnaryMinus.

147

Simulink® Release Notes

Weighted Sample Time Block Enhancements
Conversions of the Weighted Sample Time and Weighted Sample Time
Math blocks from masked S-Functions to core blocks enable more efficient
simulation of the blocks.

The following parameter changes apply to both blocks. For backward
compatibility, the old command-line parameters continue to work.

Old Prompt on
Block Dialog
Box

New Prompt
on Block Dialog
Box

Old
Command-Line
Parameter

New Command-Line
Parameter

Output data
type mode

Output data
type

OutputDataType
ScalingMode

OutDataTypeStr

Saturate
to max or
min when
overflows
occur

Saturate
on integer
overflow

DoSatur SaturateOnIntegerOverflow

The read-only BlockType parameter has also changed from S-Function to
SampleTimeMath.

Switch Case Block Parameter Change
For the Switch Case block, the command-line parameter for the Show default
case check box is now ShowDefaultCase. For backward compatibility, the old
command-line parameter CaseShowDefault continues to work.

Signal Conversion Block Parameter Change
For the Signal Conversion block, the parameter prompt for the Override
optimizations and always copy signal check box is now Exclude this
block from ’Block reduction’ optimization.

148

Version 7.4 (R2009b) Simulink® Software

Compare To Constant and Compare To Zero Blocks Use New
Default Setting for Zero-Crossing Detection
The Enable zero-crossing detection parameter is now on by default for
the Compare To Constant and Compare To Zero blocks. This change provides
consistency with other blocks that support zero-crossing detection.

Signal Builder Block Change
You can no longer see the system under the Signal Builder block mask. In
previous releases, you could right-click this block and select Look Under
Mask.

In the Model Explorer, the Signal Builder block no longer appears in the
Model Hierarchy view. In previous releases, this view was visible.

User Interface Enhancements

Context-Sensitive Help for Simulink Blocks in the Continuous
Library
R2009b introduces context-sensitive help for parameters that appear in
Simulink blocks of the Continuous library. This feature provides quick access
to a detailed description of the block parameters.

To use the context-sensitive help:

1 Place your pointer over the label of a parameter and right-click.

2 A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
that appears after right-clicking the Enable zero-crossing detection
parameter for the PID Controller block.

149

Simulink® Release Notes

3 Click What’s This? A window appears showing a description of the
parameter.

Adding Blocks from a Most Frequently Used Blocks List
If you are using the same block repeatedly in a model, then you can save
time by using the:

• Most Frequently Used Blocks tab in the Library Browser

• Most Frequently Used Blocks context menu option in the Model Editor

These features provide quick access to blocks you have added to models
frequently. For details, see “Adding Frequently Used Blocks”.

Highlighting for Duplicate Inport Blocks
The Highlight to Destination option for a signal provides more information
now for duplicate inport blocks. Applying this option to a signal of an inport
block that has duplicate blocks highlights:

• The signal and destination block for that signal

• The signals and destination blocks of the duplicate blocks at the currently
opened level in the model

Using the Model Explorer to Add a Simulink.NumericType
Object
You can add a Simulink.NumericType object to the model workspace using
the Model Explorer, provided you do not enable the Is alias option.

An example of when you might use this feature is when you:

• Want to define user-defined data types together in the model

• Do not need to preserve the data type name in the model or in the
generated code

150

Version 7.4 (R2009b) Simulink® Software

Block Output Display Dialog Has OK and Cancel Buttons
The Block Output Display dialog now includes OK and Cancel buttons to
specify whether or not to apply your option settings.

Improved Definition of Hybrid Sample Time
Historically, you could not use the hybrid sample time to effectively identify
a multirate subsystem or block. A subsystem was marked as “hybrid” and
colored in yellow whether it contained two discrete sample times or one
discrete sample time and one or more blocks with constant sample time [inf,
0]. Now, in R2009b, the check for the hybrid attribute no longer includes
constant sample times, thereby improving the usefulness of the hybrid sample
time color in identifying subsystems (and blocks) that are truly multirate.

Find Option in the Model Advisor
In R2009b, the Model Advisor includes a Find option to help you find checks.
The find option, accessible through the Edit menu, allows you to find checks
and folders more easily by searching names and analysis descriptions.

For more information, see “Overview of the Model Advisor Window”.

151

Simulink® Release Notes

Version 7.3 (R2009a) Simulink Software
This table summarizes what’s new in V7.3 (R2009a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 152

• “Component-Based Modeling” on page 153

• “Embedded MATLAB Function Blocks” on page 154

• “Data Management” on page 155

• “Simulink File Management” on page 156

• “Block Enhancements” on page 157

• “User Interface Enhancements” on page 166

• “S-Functions” on page 168

• “Removal of Lookup Table Designer from the Lookup Table Editor” on
page 168

Simulation Performance

Saving and Restoring the Complete SimState

Use the new SimState feature to save the complete simulation state. Unlike
the final states stored in earlier versions of Simulink, the SimState contains
the complete simulation state of the model (including block states that are
logged). You can then restore the state at a later time and continue simulation
from the exact instant at which you stopped the simulation.

152

http://www.mathworks.com/support/bugreports/?product=SL&release=R2009a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2009a

Version 7.3 (R2009a) Simulink® Software

Save Simulink Profiler Results

Save the results of the Simulink Profiler and later regenerate reports for
review or for comparison.

Component-Based Modeling

Port Value Displays in Referenced Models
In R2009a, port value displays can appear for blocks in a Normal mode
referenced model. To control port value displays, choose View > Port Values
in the model window. For complete information about port value displays, see
“Displaying Block Outputs”.

Parallel Builds Enable Faster Diagram Updates for Large Model
Reference Hierarchies In Accelerator Mode
R2009a provides potentially faster diagram updates for models containing
large model reference hierarchies by building referenced models that are
configured in Accelerator mode in parallel whenever possible. For example,
updating of each model block can be distributed across the cores of a multicore
host computer.

To take advantage of this feature, Parallel Computing Toolbox™ software
must be licensed and installed in your development environment. If Parallel
Computing Toolbox software is available, updating a model diagram rebuilds
referenced models configured in Accelerator mode in parallel whenever
possible.

For example, to use parallel building for updating a large model reference
hierarchy on a desktop machine with four cores, you could perform the
following steps:

1 Issue the MATLAB command ’matlabpool 4’ to set up a pool of four
MATLAB workers, one for each core, in the Parallel Computing Toolbox
environment.

2 Open your model and make sure that the referenced models are configured
in Accelerator mode.

153

Simulink® Release Notes

3 Optionally, inspect the model reference hierarchy. For example, you can
use the Model Dependency Viewer from the Tools menu of Model Explorer
to determine, based on model dependencies, which models will be built
in parallel.

4 Update your model. Messages in the MATLAB command window record
when each parallel or serial build starts and finishes.

The performance gain realized by using parallel builds for updating
referenced models depends on several factors, including how many models
can be built in parallel for a given model referencing hierarchy, the size of
the referenced models, and host machine attributes such as amount of RAM
and number of cores.

The following notes apply to using parallel builds for updating model
reference hierarchies:

• Parallel builds of referenced models support only local MATLAB workers.
They do not support remote workers in MATLAB® Distributed Computing
Server™ configurations.

• The host machine should have an appropriate amount of RAM available for
supporting the number of local workers (MATLAB sessions) that you plan to
use. For example, setting matlabpool to 4 results in five MATLAB sessions
on your machine, each using approximately 120 MB of memory at startup.

• The same MATLAB environment must be set up in each MATLAB worker
session as in the MATLAB client session — for example, the same base
workspace variables, MATLAB path settings, and so forth. You can do this
using the PreLoadFcn callback of the top model. Since the top model is
loaded with each MATLAB worker session, its preload function can be used
for any MATLAB worker session setup.

Embedded MATLAB Function Blocks

Support for Enumerated Types
Embedded MATLAB Function blocks now support Simulink enumerated
types and generate C code for enumerated data. See “Using Enumerated Data
in MATLAB Function Blocks” in the Simulink documentation.

154

Version 7.3 (R2009a) Simulink® Software

Use of Basic Linear Algebra Subprograms (BLAS) Libraries for
Speed
Embedded MATLAB Function blocks now use BLAS libraries to speed up
low-level matrix operations during simulation. See “Speeding Up Simulation
with the Basic Linear Algebra Subprograms (BLAS) Library” in the Simulink
documentation.

Data Management

Signal Can Resolve to at Most One Signal Object
You can resolve a named signal to a signal object. The object can then
specify or validate properties of the signal. For more information, see
Simulink.Signal, “Using Signal Objects to Initialize Signals and Discrete
States”, and “Using Signal Objects to Tune Initial Values”.

In previous releases, you could associate a signal with multiple signal objects,
provided that the multiple objects specified compatible signal attributes. In
R2009a, a signal can be associated with at most one signal object. The signal
can reference the object more than once, but every reference must resolve to
exactly the same object. A different signal object that has exactly the same
properties will not meet the requirement. See “Multiple Signal Objects” for
more information.

Compatibility Considerations. A compile-time error occurs in R2009a if
a model associates more than one signal object with any signal. To prevent
the error, decide which object the signal will use, and delete or reconfigure all
references to any other signal objects so that all remaining references resolve
to the chosen signal object. See “Displaying Signal Sources and Destinations”
for a description of techniques that you can use to trace the full extent of
a signal.

“Signed” Renamed to “Signedness” in the
Simulink.NumericType class
In previous releases, the Property dialog of a Simulink.NumericType object
whose Data type mode was any Fixed-point mode showed a property
named Signed, which was a checkbox. Selecting the checkbox specified
a signed type; clearing it specified an unsigned type. The API equivalent

155

Simulink® Release Notes

of Signed was Signed, a Boolean whose values could be 1 (signed) or 0
(unsigned).

In R2009a, a property named Signedness replaces Signed in the Property
dialog of a Simulink.NumericType object. You can set Signedness to Signed
(the default), Unsigned, or Auto, which specifies that the object inherits its
Signedness. The API equivalent of Signedness is Signedness, which can
be 1 (signed), 0 (unsigned), or Auto.

For compatibility with existing models, the property Signed remains available
in R2009a. Setting Signed in R2009a sets Signedness accordingly. Accessing
Signed in R2009a returns the value of Signedness if that value is 0 or 1, or
generates an error if the value of Signedness is Auto, because that is not a
legal value for Signed.

Do not use the Signed with Simulink.NumericType in new models; use
Signedness instead. See Simulink.NumericType for more information.

“Sign” Renamed to “Signedness” in the Data Type Assistant
For blocks and classes that support fixed-point data types, the property
Sign previously appeared in the Data Type Assistant when the Mode was
Fixed point. In R2009a, this property appears in the Data Type Assistant
as Signedness. Only the GUI label of the property differs; its behavior and
API are unchanged in all contexts.

Tab Completion for Enumerated Data Types
Tab completion now works for enumerated data types in the same way that
it does for other MATLAB classes. See “Instantiating Enumerations in
MATLAB” for details.

Simulink File Management

Model Dependencies Tools
Enhanced file dependency analysis has the following new features:

156

Version 7.3 (R2009a) Simulink® Software

• Files in the Simulink manifest are now recorded relative to a project
root folder making manifests easier to share, compare and read. See
“Generating Manifests” and “Editing Manifests”.

• Command-line dependency analysis can now report toolbox dependencies,
and when discovering file dependencies you can optionally generate a
manifest file. See “Command-Line Dependency Analysis”

Block Enhancements

Prelookup and Interpolation Using Prelookup Blocks Support
Parameter Data Types Different from Signal Data Types
The Prelookup block supports breakpoint data types that differ from input
data types. This enhancement provides these benefits:

• Enables lower memory requirement for storing breakpoint data that uses a
smaller type than the input signal

• Enables sharing of prescaled breakpoint data between two Prelookup
blocks with different input data types

• Enables sharing of custom storage breakpoint data in generated code for
blocks with different input data types

The Interpolation Using Prelookup block supports table data types that differ
from output data types. This enhancement provides these benefits:

• Enables lower memory requirement for storing table data that uses a
smaller type than the output signal

• Enables sharing of prescaled table data between two Interpolation Using
Prelookup blocks with different output data types

• Enables sharing of custom storage table data in generated code for blocks
with different output data types

The Interpolation Using Prelookup block also supports separate data type
specification for intermediate results. This enhancement enables use of a
greater precision for internal computations than for table data or output data.

157

Simulink® Release Notes

Lookup Table (n-D) and Interpolation Using Prelookup Blocks
Perform Efficient Fixed-Point Interpolations
Whenever possible, Lookup Table (n-D) and Interpolation Using Prelookup
blocks use a faster overflow-free subtraction algorithm for fixed-point
interpolation. To achieve this efficiency, the blocks use a data type of larger
container size to perform the overflow-free subtraction, instead of using
control-flow branches as in previous releases. Also, the generated code for
fixed-point interpolation is now smaller.

Compatibility Considerations. Due to the change in the overflow-free
subtraction algorithm, fixed-point interpolation in Lookup Table (n-D) and
Interpolation Using Prelookup blocks might, in a few cases, introduce
different rounding results from previous releases. Both simulation and code
generation use the new overflow-free algorithm, so they have the same
rounding behavior and provide bit-true consistency.

Expanded Support for Simplest Rounding Mode to Maximize
Block Efficiency
In R2009a, support for the Simplest rounding mode has been expanded to
enable more blocks to handle mixed floating-point and fixed-point data types:

• Abs

• Data Type Conversion Inherited

• Difference

• Discrete Derivative

• Discrete FIR Filter

• Discrete-Time Integrator

• Dot Product

• Fixed-Point State-Space

• Gain

• Index Vector

• Lookup Table (n-D)

158

Version 7.3 (R2009a) Simulink® Software

• Math Function (for the magnitude^2, reciprocal, square, and sqrt
functions)

• MinMax

• Multiport Switch

• Saturation

• Saturation Dynamic

• Sum

• Switch

• Transfer Fcn Direct Form II

• Transfer Fcn Direct Form II Time Varying

• Transfer Fcn First Order

• Transfer Fcn Lead or Lag

• Transfer Fcn Real Zero

• Weighted Sample Time

• Weighted Sample Time Math

For more information, see “Rounding Mode: Simplest” in the Simulink Fixed
Point User’s Guide.

New Rounding Modes Added to Multiple Blocks
For the following Simulink blocks, the dialog box now displays Convergent
and Round as possible rounding modes. These modes enable numerical
agreement with embedded hardware and MATLAB results.

• Abs

• Data Type Conversion

• Data Type Conversion Inherited

• Difference

• Discrete Derivative

• Discrete FIR Filter

159

Simulink® Release Notes

• Discrete-Time Integrator

• Divide

• Dot Product

• Fixed-Point State-Space

• Gain

• Index Vector

• Interpolation Using Prelookup

• Lookup Table

• Lookup Table (2-D)

• Lookup Table (n-D)

• Lookup Table Dynamic

• Math Function (for the magnitude^2, reciprocal, square, and sqrt
functions)

• MinMax

• Multiport Switch

• Prelookup

• Product

• Product of Elements

• Saturation

• Saturation Dynamic

• Sum

• Switch

• Transfer Fcn Direct Form II

• Transfer Fcn Direct Form II Time Varying

• Transfer Fcn First Order

• Transfer Fcn Lead or Lag

• Transfer Fcn Real Zero

160

Version 7.3 (R2009a) Simulink® Software

• Weighted Sample Time

• Weighted Sample Time Math

In the dialog box for these blocks, the field Round integer calculations
toward has been renamed Integer rounding mode. The command-line
parameter remains the same.

For more information, see “Rounding Mode: Convergent” and “Rounding
Mode: Round” in the Simulink Fixed Point User’s Guide.

Compatibility Considerations. If you use an earlier version of Simulink
software to open a model that uses the Convergent or Round rounding mode,
the mode changes automatically to Nearest.

Lookup Table (n-D) Block Performs Faster Calculation of Index
and Fraction for Power of 2 Evenly-Spaced Breakpoint Data
For power of 2 evenly-spaced breakpoint data, the Lookup Table (n-D) block
uses bit shifts to calculate the index and fraction, instead of division. This
enhancement provides these benefits:

• Faster calculation of index and fraction for power of 2 evenly-spaced
breakpoint data

• Smaller size of generated code for the Lookup Table (n-D) block

Discrete FIR Filter Block Supports More Filter Structures
The following filter structures have been added to the Discrete FIR Filter
block:

• Direct form symmetric

• Direct form antisymmetric

• Direct form transposed

• Lattice MA

Running a model with these filter structures requires a Signal Processing
Blockset license.

161

Simulink® Release Notes

Discrete Filter Block Performance, Data Type, Dimension, and
Complexity Enhancements
The following enhancements have been made to the Discrete Filter block:

• Improved numerics and run-time performance of outputs and states by
reducing the number of divide operations in the filter to at most one

• Support for signed fixed-point and integer data types

• Support for vector and matrix inputs

• Support for complex inputs and filter coefficients, where inputs and
coefficients can each be real or complex, independently of the other

• A new Initial states parameter allows you to enter non-zero initial states

• A new Leading denominator coefficient equals 1 parameter provides a
more efficient implementation by eliminating all divides when the leading
denominator coefficient is one

Compatibility Considerations. Due to these enhancements, you might
encounter the compatibility issues in the following sections.

Realization parameter removed. The Real-Time Workshop software
realization parameter has been removed from this block. You can no
longer use the set_param and get_param functions on this block parameter.
The generated code for this block has been improved to be similar to the
former 'sparse' realization, while maintaining tunability as in the former
'general' realization.

State changes. Due to the reduction in the number of divide operations
performed by the block, you might notice that your logged states have changed
when the leading denominator coefficient is not one.

MinMax Block Performs More Efficient and Accurate
Comparison Operations
For multiple inputs with mixed floating-point and fixed-point data types, the
MinMax block selects an appropriate data type for performing comparison
operations, instead of using the output data type for all comparisons, as in
previous releases. This enhancement provides these benefits:

162

Version 7.3 (R2009a) Simulink® Software

• Faster comparison operations, with fewer fixed-point overflows

• Smaller size of generated code for the MinMax block

Logical Operator Block Supports NXOR Boolean Operator
In R2009a, the Logical Operator block has been enhanced with a new NXOR
Boolean operator. When you select this operator, the block returns TRUE
when an even number of inputs are TRUE. Similarly, the block returns
FALSE when an even number of inputs are FALSE.

Use NXOR to replace serial XOR and NOT operations in a model.

Discrete-Time Integrator Block Uses Efficient
Integration-Limiting Algorithm for Forward Euler
Method
When you select the Limit output check box for the Forward Euler method,
the Discrete-Time Integrator block uses only one saturation when a second
saturation is unnecessary. This change in the integration-limiting algorithm
provides these benefits:

• Faster integration

• Smaller size of generated code for the Discrete-Time Integrator block

Dot Product Block Converted from S-Function to Core Block
Conversion of the Dot Product block from a masked S-Function to a core
block enables more efficient simulation and better handling of the block in
Simulink models.

Due to this conversion, you can specify sample time and values for the output
minimum and maximum for the Dot Product block. The read-only BlockType
parameter has also changed from S-Function to DotProduct.

Compatibility Considerations. In R2009a, signal dimension propagation
might behave differently from previous releases. As a result, your model
might not compile under these conditions:

• Your model contains a Dot Product block in a source loop.

163

Simulink® Release Notes

• Your model has underspecified signal dimensions.

If your model does not compile, set dimensions for signals that are not fully
specified.

For example, your model might not compile in this case:

• Your model contains a Transfer Fcn Direct Form II Time Varying block,
which is a masked S-Function with a Dot Product block in a source loop.

• The second and third input ports of the Transfer Fcn Direct Form II Time
Varying block are unconnected, which results in underspecified signal
dimensions.

To ensure that your model compiles in this case, connect Constant blocks to
the second and third input ports of the Transfer Fcn Direct Form II Time
Varying block and specify the signal dimensions for both ports explicitly.

Pulse Generator Block Uses New Default Values for Period
and Pulse Width
For the Pulse Generator block, the default Period value has changed from 2
to 10, and the default Pulse Width value has changed from 50 to 5. These
changes enable easier transitions between time-based and sample-based
mode for the pulse type.

Random Number, Uniform Random Number, and Unit Delay
Blocks Use New Default Values for Sample Time
The default Sample time values for the Random Number, Uniform Random
Number, and Unit Delay blocks have changed:

• The default Sample time value for the Random Number and Uniform
Random Number blocks has changed from 0 to 0.1.

• The default Sample time value for the Unit Delay block has changed
from 1 to –1.

164

Version 7.3 (R2009a) Simulink® Software

Trigonometric Function Block Provides Better Support of
Accelerator Mode
The Trigonometric Function block now supports Accelerator mode for all
cases with real inputs and Normal mode support. For more information about
simulation modes, see “Accelerating Models” in the Simulink User’s Guide.

Reshape Block Enhanced with New Input Port
The Reshape block Output dimensionality parameter has a new option,
Derive from reference input port. This option creates a second input
port, Ref, on the block and derives the dimensions of the output signal from
the dimensions of the signal input to the Ref input port. Similarly, the
Reshape block command-line parameter, OutputDimensionality, has the
new option, Derive from reference input port.

Multidimensional Signals in Simulink Blocks
The following blocks were updated to support multidimensional signals. For
more information, see “Signal Dimensions” in the Simulink User’s Guide.

• Assertion

• Extract Bits

• Check Discrete Gradient

• Check Dynamic Gap

• Check Dynamic Lower Bound

• Check Dynamic Range

• Check Dynamic Upper Bound

• Check Input Resolution

• Check Static Gap

• Check Static Lower Bound

• Check Static Range

• Check Static Upper Bound

• Data Type Scaling Strip

• Wrap to Zero

165

Simulink® Release Notes

Subsystem Blocks Enhanced with Read-Only Property That
Indicates Virtual Status
The following subsystem blocks now have the property, IsSubsystemVirtual.
This read-only property returns a Boolean value, on or off, to indicate if a
subsystem is virtual.

• Atomic Subsystem

• Code Reuse Subsystem

• Configurable Subsystem

• Enabled and Triggered Subsystem

• Enabled Subsystem

• For Iterator Subsystem

• Function-Call Subsystem

• If Action Subsystem

• Subsystem

• Switch Case Action Subsystem

• Triggered Subsystem

• While Iterator Subsystem

User Interface Enhancements

Port Value Displays in Referenced Models
In R2009a, port value displays can appear for blocks in a Normal mode
referenced model. To control port value displays, choose View > Port Values
in the model window. For complete information about port value displays, see
“Displaying Block Outputs”.

Print Sample Time Legend
Print the Sample Time Legend either as an option of the block diagram print
dialog box or directly from the legend. In either case, the legend will print
on a separate sheet of paper. For more information, see “Print Sample Time
Legend”.

166

Version 7.3 (R2009a) Simulink® Software

M-API for Access to Compiled Sample Time Information
New MATLAB API provides access to the compiled sample time data, color,
and annotations for a specific block or the entire block diagram directly from
M code.

Model Advisor Report Enhancements
In R2009a, the Model Advisor report is enhanced with:

• The ability to save the report to a location that you specify.

• Improved readability, including the ability to:

- Filter the report to view results according to the result status. For
example, you can now filter the report to show errors and warnings only.

- Collapse and expand the folder view in the report.

- View a summary of results for each folder in the report.

See “Consulting the Model Advisor” in the Simulink User’s Guide.

Counterclockwise Block Rotation
This release lets you rotate blocks counterclockwise as well as clockwise (see
“How to Rotate a Block” for more information).

Physical Port Rotation for Masked Blocks
This release lets you specify that the ports of a masked block not be
repositioned after a clockwise rotation to maintain a left-to-right and
top-to-bottom numbering of the ports. This enhancement facilitates use of
masked blocks in mechanical systems, hydraulic systems, and other modeling
applications where block diagrams do not have a preferred orientation (see
“Port Rotation Type” for more information.)

Smart Guides
In R2009a, when you drag a block, Simulink draws lines, called smart guides,
that indicate when the block’s ports, center, and edges align with the ports,
centers, and edges of other blocks in the same diagram. This helps you create
well-laid-out diagrams (see “Smart Guides” for more information).

167

Simulink® Release Notes

Customizing the Library Browser’s User Interface
Release 2009a lets you customize the Library Browser’s user interface. You
can change the order in which libraries appear in the Library Browser, disable
or hide libraries, sublibraries, and blocks, and add, disable, or hide items
on the Library Browser’s menus. See “Customizing the Library Browser”
for more information.

Subsystem Creation Command
This release adds a command, Simulink.BlockDiagram.createSubSystem,
that creates a subsystem from a specified group of blocks.

S-Functions
Level-1 Fortran S-Functions

In this release, if you attempt to compile or simulate a model with
a Level-1 Fortran S-function, you will receive an error due to the
use of the newly deprecated function ’MXCREATEFULL’ within the
Fortran S-function wrapper ’simulink.F’. If your S-function does not
explicitly use ’MXCREATEFULL’, simply recompile the S-function. If
your S-function uses ’MXCREATEFULL’, replace each instance with
’MXCREATEDOUBLEMATRIX’ and recompile the S-function.

Removal of Lookup Table Designer from the Lookup
Table Editor
In R2009a, the Lookup Table Designer is no longer available in the Lookup
Table Editor.

Compatibility Considerations
Previously, you could select Edit > Design Table in the Lookup Table Editor
to launch the Lookup Table Designer. In R2009a, this menu item is no longer
available.

168

Version 7.2 (R2008b) Simulink® Software

Version 7.2 (R2008b) Simulink Software
This table summarizes what’s new in V7.2 (R2008b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 169

• “Component-Based Modeling” on page 171

• “Embedded MATLAB Function Blocks” on page 175

• “Data Management” on page 177

• “Simulink File Management” on page 178

• “Block Enhancements” on page 178

• “User Interface Enhancements” on page 180

• “S-Functions” on page 211

• “MATLAB Changes Affecting Simulink” on page 212

Simulation Performance

Parallel Simulations in Rapid Accelerator Mode
Simulink now has the capability to run parallel simulations in Rapid
Accelerator mode using parfor on prebuilt Simulink models.

169

http://www.mathworks.com/support/bugreports/?product=SL&release=R2008b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2008b

Simulink® Release Notes

You can now run parallel simulations in Rapid Accelerator mode with
different external inputs and tunable parameters. The sim command can be
called from a parfor loop if the model does not require a rebuild.

For more information, see “Running a Simulation Programmatically”.

Improved Rebuild Mechanism in Rapid Accelerator Mode
Simulink now has enhanced tuning of the solver and logging parameters in
Rapid Accelerator mode without requiring a rebuild.

An improved rebuild mechanism ensures that the model does not rebuild
when you change block diagram parameters (e.g., stop time, solver tolerances,
etc.). This enhancement significantly decreases the time for simulation in
Rapid Accelerator mode.

Data Type Size Limit on Accelerated Simulation Removed
In previous releases, accelerated simulation was not supported for models
that use integer or fixed-point data types greater than 32 bits in length.
In this release, the acceleration limit on integer and fixed-point data type
size has increased to 128 bits, the same as the limit for normal-mode, i.e.,
unaccelerated simulation.

New Initialization Behavior in Conditional, Action, and Iterator
Subsystems
For releases prior to 2008b, at the simulation start time, Simulink initializes
all blocks unconditionally and subsystems cannot reset the states. Release
2008b introduces behavior that mirrors the behavior of Real-Time Workshop.
For normal simulation mode, the Simulink block initialization method
(mdlInitializeConditions) can be called more than once at the start time if:

• The block is contained within a Conditional, Action, or Iterator subsystem.

• The subsystem is configured to reset states when enabled (or triggered);
and the subsystem is enabled (or triggered) at the start time.

This new initialization behavior has the following effect on S-functions:

170

Version 7.2 (R2008b) Simulink® Software

• If you need to ensure that the initialization code in the
mdlInitializeConditions function runs only once, then move this
initialization code into the mdlStart method. MathWorks recommends
this code change as a best practice.

• The change to the block initialization method, as described above, exposed
a bug in the S-function macro ssIsFirstInitCond for applications involving
an S-function within a Conditional, Action or Iterator subsystem. This bug
has been fixed in R2008b.

To determine if you consequently need to update your Simulink S-functions
for compatibility, compare the simulation results from R2007b or an
earlier release with those of R2008b. If they differ at the start time,
ssIsFirstInitCond is running more than once and you must regenerate and
recompile the appropriate Simulink S-functions.

For Real-Time Workshop, you must regenerate and recompile all S-function
targets and any Real-Time Workshop target for which the absolute time is
turned on. (If a third-party vendor developed your S-functions, have the
vendor regenerate and recompile them for you. The vendor can use the
SLDiagnostics feature to identify all S-functions in a model.)

Component-Based Modeling

Processor-in-the-Loop Mode in Model Block
In R2008b, Simulink has a new Model block simulation mode for
processor-in-the-loop (PIL) verification of generated code. This feature
requires Real-Time Workshop Embedded Coder software. The feature lets
you test the automatically generated and cross-compiled object code on your
embedded processor by easily switching between Normal, Accelerator, and
PIL simulation modes in your original model. You can reuse test suites,
resulting in faster iteration between model development and generated code
verification. For more information, see “Referenced Model Simulation Modes”.

Conditionally Executed Subsystem Initial Conditions
R2008b of Simulink includes enhanced handling of initial conditions for
conditionally executed subsystems, Merge blocks, and Discrete-Time
Integrator blocks, improving consistency of simulation results.

171

Simulink® Release Notes

This feature allows you to select simplified initialization mode for
conditionally executed subsystems, Merge blocks, subsystem elapsed time,
and Discrete-Time Integrator blocks. The simplified initialization improves
the consistency of simulation results, especially for models that do not specify
initial conditions for conditional subsystem output ports, and for models that
have conditionally executed subsystem output ports connected to S-functions.

Note To use the new simplified initialization mode, you must activate this
feature.

Activating This Feature for New Models. For new models, you can
activate this feature as follows:

1 In the model window, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box opens.

2 Select Diagnostics > Data Validity.

The Data Validity Diagnostics pane opens.

3 In the Model Initialization section, set Underspecified initialization
detection to Simplified.

4 Select Diagnostics > Connectivity.

The Connectivity Diagnostics pane opens.

5 Set Mux blocks used to create bus signals to error.

6 Set Bus signal treated as vector to error.

7 Click OK.

For more information, see “Underspecified initialization detection”.

Migrating Existing Models. For existing models, MathWorks recommends
using the Model Advisor to migrate your model to the new simplified
initialization mode settings.

172

Version 7.2 (R2008b) Simulink® Software

To migrate an existing model:

1 In the model window, select Simulation > Configuration Parameters.

The Configuration Parameters dialog box opens.

2 Select Diagnostics > Data Validity.

The Data Validity Diagnostics pane opens.

3 In the Merge Block section, set Detect multiple driving blocks
executing at the same time step to error.

4 Click OK.

5 Simulate the model and ensure that it runs without errors.

6 Select Tools > Model Advisor.

The Model Advisor opens.

7 In the Model Advisor Task Manager, select By Product > Simulink.

8 Run Check for proper bus usage in the Model Advisor.

9 Run Check consistency of initialization parameters for Outport and
Merge blocks in the Model Advisor.

10 After you have resolved any errors identified by this check, click Proceed
to migrate your model to simplified initialization mode.

For information on using the Model Advisor, see “Consulting the Model
Advisor” in the Simulink User’s Guide.

For information on the Model Advisor checks, see “Check consistency of
initialization parameters for Outport and Merge blocks” in the Simulink
Reference.

173

Simulink® Release Notes

Compatibility Considerations. Activating this feature can cause
differences in simulation results, when compared to previous versions. Since
you must opt-in to this feature before any changes are made, there are
no issues for existing models. However, MathWorks recommends that you
backup existing models before you migrate them, in case you want to return
to the original behavior.

Model Block Input Enhancement
Model block inputs can now be local and reusable. This capability reduces
global data usage and data copying when interfacing with code from a
referenced model, which can reduce memory usage during simulation and
increase the efficiency of generated code. This enhancement is always
relevant, so no configuration parameter is necessary or provided to control it.

One Parameter Controls Accelerator Mode Build Verbosity
In previous releases, the ModelReferenceSimTargetVerbose parameter
controlled verbosity when a referenced model was built for execution
in Accelerator mode, as specified by the Model block’s Simulation mode
parameter. The ModelReferenceSimTargetVerbose had no GUI equivalent.
See “Referenced Model Simulation Modes” and the Model block documentation
for more information.

A different parameter, AccelVerboseBuild, controls the verbosity when a
model is built in Simulink Accelerator mode or Rapid Accelerator mode,
as specified in the Simulation menu. See “Accelerating Models” for more
information. The GUI equivalent of the AccelVerboseBuild parameter
is Configuration Parameters > Optimization > Verbose accelerator
builds. See “Verbose accelerator builds” for more information.

All types of accelerated simulation entail code generation (though the code
is not visible to the user) and the two verbosity parameters control whether
a detailed account of the code generation process appears in the MATLAB
Command Window. However, providing separate verbosity parameters for
the two cases was unnecessary.

In R2008b, the ModelReferenceSimTargetVerbose parameter is deprecated
and has no effect. The AccelVerboseBuild parameter (Configuration
Parameters > Optimization > Verbose accelerator builds) now controls

174

Version 7.2 (R2008b) Simulink® Software

the verbosity for Simulink Accelerator mode, referenced model Accelerator
mode, and Rapid Accelerator mode.

Another parameter, RTWVerbose (Configuration Parameters > Real-Time
Workshop > Debug > Verbose build) controls the verbosity of Real-Time
Workshop code generation. This parameter is unaffected by the changes to
ModelReferenceSimTargetVerbose and AccelVerboseBuild.

Compatibility Considerations. In R2008b, trying to set
ModelReferenceSimTargetVerbose generates a warning message and has no
effect on verbosity. The warning says to use AccelVerboseBuild instead. The
default for AccelVerboseBuild is 'off'.

A model saved in R2008b will not include the
ModelReferenceSimTargetVerbose parameter. An R2008b model saved to an
earlier Simulink version that supports ModelReferenceSimTargetVerbose
will include that parameter, giving it the same value that AccelVerboseBuild
has in the R2008b version.

The effect of loading a model from an earlier Simulink version into R2008b
depends on the source version:

• Prior to R14: Neither parameter exists, so no compatibility consideration
arises.

• R14 – R2006b: Only ModelReferenceSimTargetVerbose exists. Copy its
value to AccelVerboseBuild.

• R2007a: Both parameters exist but neither has a GUI equivalent. Ignore
the value of ModelReferenceSimTargetVerbose and post no warning.

• R2007b – R2008a: Both parameters exist and AccelVerboseBuild and
has a GUI equivalent. If ModelReferenceSimTargetVerbose is 'on', post
a warning to use AccelVerboseBuild instead.

Embedded MATLAB Function Blocks

Support for Fixed-Point Word Lengths Up to 128 Bits
Embedded MATLAB Function blocks now support up to 128 bits of fixed-point
precision. This increase in maximum precision from 32 to 128 bits supports

175

Simulink® Release Notes

generating efficient code for targets with non-standard word sizes and allows
Embedded MATLAB Function blocks to work with large fixed-point signals.

Enhanced Simulation and Code Generation Options for
Embedded MATLAB Function Blocks
You can now specify embeddable code generation options from the Embedded
MATLAB Editor using a new menu item: Tools > Open RTW Target.
Simulation options continue to be available from Tools > Open Simulation
Target.

In addition, simulation and embeddable code generation options now appear
in a single dialog box. For details, see “Unified Simulation and Embeddable
Code Generation Options” on page 186.

Data Type Override Now Works Consistently on Outputs
When you enable data type override for Embedded MATLAB Function blocks,
outputs with explicit and inherited types are converted to the override type.
For example, if you set data type override to true singles, the Embedded
MATLAB Function block converts all outputs to single type and propagates
the override type to downstream blocks.

In previous releases, Embedded MATLAB Function blocks did not apply data
type override to outputs with inherited types. Instead, the inherited type
was preserved even if it did not match the override type, sometimes causing
errors during simulation.

Compatibility Consideration. Applying data type override rules to outputs
with inherited types may introduce the following compatibility issues:

• Downstream Embedded MATLAB Function blocks must be able to accept
the propagated override type. Therefore, you must allow data type override
for downstream blocks for which you set output type explicitly. Otherwise,
you may not be able to simulate your model.

• You might get unexpected simulation results if the propagated type uses
less precision than the original type.

176

Version 7.2 (R2008b) Simulink® Software

Improperly-Scaled Fixed-Point Relational Operators Now
Match MATLAB Results
When evaluating relational operators, Embedded MATLAB Function blocks
compute a common type that encompasses both input operands. In previous
releases, if the common type required more than 32 bits, Embedded MATLAB
Function blocks may have given different answers from MATLAB. Now,
Embedded MATLAB Function blocks give the same answers as MATLAB.

Compatibility Consideration. Some relational operators generate
multi-word code even if one of the fixed-point operands is not a multi-word
value. To work around this issue, cast both operands to the same fixed-point
type (using the same scaling method and properties).

Data Management

Support for Enumerated Data Types
Simulink models now support enumerated data types. For details, see:

• “Enumerations and Modeling” in the Simulink User’s Guide

• “Using Enumerated Data in Stateflow Charts” in the Stateflow User’s
Guide

• “Enumerations” in the Real-Time Workshop User’s Guide

Simulink Bus Editor Enhancements
The Simulink Bus Editor can now filter displayed bus objects by either name
or relationship. See “Filtering Displayed Bus Objects” for details.

You can now fully customize the export and import capabilities of the Simulink
Bus Editor. See “Customizing Bus Object Import and Export” for details.

New Model Advisor Check for Proper Data Store Memory
Usage
A new Model Advisor check posts advice and warnings about the proper
use of Data Store Memory, Data Store Read, and Data Store Write blocks.
See “Check Data Store Memory blocks for multitasking, strong typing, and
shadowing issues” for details.

177

Simulink® Release Notes

Simulink File Management

Model Dependencies Tools
Enhanced file dependency analysis can now:

• Find system target files

• Analyze STF_make_rtw_hook functions

• Analyze all configuration sets, not just the active set.

See “Scope of Dependency Analysis” in the Simulink User’s Guide.

Block Enhancements

Trigonometric Function Block
R2008b provides an enhanced Trigonometric Function block to:

• Support sincos

• Provide greater floating-point consistency

Math Function Block
In Simulink 2008b, an enhanced Math Function block provides greater
floating-point consistency.

Merge Block
R2008b provides enhanced handling of initial conditions for the Merge block
and thus improves the consistency of simulation results.

For more information, see “Conditionally Executed Subsystem Initial
Conditions” on page 171.

Discrete-Time Integrator Block
R2008b provides an enhanced handling of initial conditions for the
Discrete-Time Integrator block and thereby improves the consistency of
simulation results.

178

Version 7.2 (R2008b) Simulink® Software

For more information, see “Conditionally Executed Subsystem Initial
Conditions” on page 171.

Modifying a Link to a Library Block in a Callback Function Can
Cause Illegal Modification Errors
In this release, Simulink software can signal an error if a block callback
function, e.g., CopyFcn, modifies a link to a library block. For example, an
error occurs if you attempt to copy a library link to a self-modifying masked
subsystem whose CopyFcn deletes a block contained by the subsystem.
This change means that you cannot use block callback functions to create
self-modifying library blocks. Mask initialization code for a library block is
the only code allowed to modify the block.

Compatibility Consideration. Previous releases allowed use of block
callback functions to create self-modifying library blocks. Opening, editing, or
running models that contain links to such blocks can cause illegal modification
errors in the current release. As a temporary work around, you can break any
links in your model to a library block that uses callback functions to modify
itself. The best long-term solution is to move the self-modification code to the
block’s mask initialization section.

Random Number Block
In the dialog box for the Random Number block, the field Initial Seed has
been renamed Seed. The command-line parameter remains the same.

Signal Generator Block
The Signal Generator block now supports multidimensional signals. For a list
of blocks that support multidimensional signals, see “Signal Dimensions” in
the Simulink User’s Guide.

Sum Block
The accumulator of the Sum block now applies for all input signals of any
data type (for example, double, single, integer, and fixed-point). In previous
releases, the accumulator of this block was limited to inputs and outputs of
only integer or fixed-point data types.

179

Simulink® Release Notes

Switch Block
The Switch block now supports the immediate back propagation of a known
output data type to the first and third input ports. This occurs when you set
the Output data type parameter to Inherit: Inherit via internal
rule and select the Require all data port inputs to have the same data
type check box. In previous releases, this back propagation did not occur
immediately.

Uniform Random Number Block
In the dialog box for the Uniform Random Number block, the field Initial
Seed has been renamed Seed. The command-line parameter remains the
same.

User Interface Enhancements

Sample Time
The display of sample time information has been expanded to include:

• Signal lines labeling with new color-independent Annotations

• A new Sample Time Legend maps the sample time Colors and
Annotations to sample times.

• A distinct color for indicating that a block and signal are asynchronous.

The section “Modeling and Simulation of Discrete Systems” has been renamed
“Working with Sample Times” and has been significantly expanded to provide
a comprehensive review of sample times and a discussion on the new Sample
Time Legend and Sample Time Display features. For more information, see
“Working with Sample Times”.

Model Advisor
In R2008b, the Model Advisor is enhanced with:

• A model and data restore point that provides you with the ability to revert
changes made in response to advice from the Model Advisor

• Context-sensitive help available for Model Advisor checks

180

Version 7.2 (R2008b) Simulink® Software

• Tristate check boxes that visually indicate selected and cleared checks
in folders

• A system selector for choosing the system level that the Model Advisor
checks

See “Consulting the Model Advisor” in the Simulink User’s Guide.

“What’s This?” Context-Sensitive Help for Commonly Used
Blocks
R2008b introduces context-sensitive help for parameters that appear in the
following commonly used blocks in Simulink:

Bus Creator
Bus Selector
Constant
Data Type Conversion
Demux
Discrete-Time Integrator
Gain
Inport
Integrator
Logical Operator
Mux
Outport
Product
Relational Operator
Saturation
Subsystem
Sum
Switch
Terminator
Unit Delay

This feature provides quick access to a detailed description of the parameters,
saving you the time it would take to find the information in the Help browser.

To use the "What’s This?" help, do the following:

181

Simulink® Release Notes

1 Place your cursor over the label of a parameter.

2 Right-click. A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
appearing after right-clicking theMultiplication parameter for the Gain
block.

3 Click What’s This? A context-sensitive help window appears showing a
description of the parameter.

Compact Icon Option Displays More Blocks in Library Browser
This release introduces a compact icon option that maximizes the number of
blocks and libraries visible in the Library Browser’s Library pane without
scrolling (see “Library Pane”).

Signal Logging and Test Points Are Controlled Independently
In previous releases, a signal could be logged only if it was also a test point.
Therefore, selecting Log signal data in the Signal Properties dialog box
automatically selected Test point, and disabled it so that it could not be
cleared. However, a signal can be a test point without being logged, so
clearing Log signal data did not automatically clear Test point. The
same asymmetric behavior occurred programmatically with the underlying
DataLogging and TestPoint parameters.

In R2008b, no connection exists between enabling logging for a signal and
making the signal a test point. Either, both, or neither capability can be
enabled for any signal. Selecting and clearing Log signal data therefore
has no effect on the setting of Test point, and similarly for the underlying
parameters. See “Exporting Signal Data Using Signal Logging” and “Working
with Test Points” for more information.

To reflect the independence of logging and test points, the command Test
Point Indicators in the Simulink Format > Port/Signal Displays

182

Version 7.2 (R2008b) Simulink® Software

menu has been renamed Testpoint/Logging Indicators. The effect of
the command, the graphical indicators displayed, and the meaning of the
underlying parameter ShowTestPointIcons, are all unchanged.

Compatibility Considerations. Scripts and practices that relied on Log
signal data to automatically set a test point must be changed to set the test
point explicitly. The relevant set_param commands are:

set_param(PortHandle(n),'DataLogging','on')
set_param(PortHandle(n),'TestPoint','on')

To disable either capability, set the relevant parameter to 'off'. See
“Enabling Logging for a Signal” for an example.

Signal Logging Consistently Retains Duplicate Signal Regions
A virtual signal is a signal that graphically represents other signals or parts
of other signals. Virtual signals are purely graphical entities; they have
no functional or mathematical significance. The nonvirtual components
of a virtual signal are called regions. For example, if Mux block (which is
a virtual block) inputs two nonvirtual signals, the block outputs a virtual
signal that has two regions. See “Virtual Signals” and “Mux Signals” for
more information.

In previous releases, when a virtual signal contains duplicate regions,
signal logging excluded all but one of the duplicates in some contexts, but
included all of the duplicates in other contexts, giving inconsistent results.
For example, if the same nonvirtual signal is connected to two input ports
of a Mux block, that one signal is the source of two regions in the Mux
block output. Previously, if that output was being logged in Normal mode
simulation, the log object would contain data for only one of the regions,
because the other was eliminated as a duplicate.

In R2008a, Simulink no longer eliminates duplicate regions when logging the
output of virtual blocks like Mux or Selector blocks. Simulink now logs all
regions, which appear in a Simulink.TsArray object. The duplicate regions
have unique names as follows:

<signal_name>_reg<#counter>

183

Simulink® Release Notes

This change affects signal logs and all capabilities that depend on signal
logging, such as scopes and signal viewers.

Compatibility Considerations. In cases where signal logging previously
omitted duplicate regions, signal logs will now be larger, and scopes and signal
viewers will now show more data. This change could give the impression that
the results of simulation have changed, but actually only the logging of those
results has changed. No action is needed unless:

• A dependency exists on the exact size of a log or the details of its contents.

• The size and details have changed due to the inclusion of previously
omitted signals.

In such a case, make changes as needed to accept the changed logging
behavior. See “Exporting Signal Data Using Signal Logging” for more
information.

Simulink Configuration Parameters
In R2008b, the following Simulink configuration parameters are updated:

Note The command-line parameter name is not changing for these
parameters.

Location Previous Parameter New Parameter

Solver States shape preservation /
ShapePreserveControl

Shape preservation /
ShapePreserveControl

Solver Consecutive min
step size violations /
MaxConsecutiveMinStep

Number of consecutive
min steps /
MaxConsecutiveMinStep

Solver Consecutive zero crossings
relative tolerance /
ConsecutiveZCsStepRelTol

Time tolerance /
ConsecutiveZCsStepRelTol

184

Version 7.2 (R2008b) Simulink® Software

Location Previous Parameter New Parameter

Solver Zero crossing
location algorithm /
ZeroCrosAlgorithm

Algorithm /
ZeroCrosAlgorithm

Solver Zero crossing location
threshold / ZCThreshold

Signal threshold/
ZCThreshold

Solver Number of consecutive
zero crossings allowed /
MaxConsecutiveZCs

Number of consecutive
zero crossings /
MaxConsecutiveZCs

Optimization Eliminate superfluous
temporary variables
(Expression folding) /
ExpressionFolding

Eliminate superfluous
local variables (Expression
folding) / ExpressionFolding

Optimization Remove internal state
zero initialization /
ZeroInternalMemoryAtStartup

Remove internal data
zero initialization /
ZeroInternalMemoryAtStartup

In R2008b, the following Simulink configuration parameters have moved:

Note The command-line parameter name is not changing for these
parameters.

Parameter Old Location New Location

Check undefined
subsystem initial output

Diagnostics > Compatibility Diagnostics > Data Validity

Check preactivation output
of execution context

Diagnostics > Compatibility Diagnostics > Data Validity

Check runtime output of
execution context

Diagnostics > Compatibility Diagnostics > Data Validity

In R2008b, the Optimization > Minimize array reads using temporary
variables parameter has been obsoleted.

185

Simulink® Release Notes

Model Help Menu Update
The Simulink model Help menu now includes links to block support tables for
the following products, if they are installed.

• Simulink

• Communications Blockset™

• Signal Processing Blockset

• Video and Image Processing Blockset™

To obtain the block support tables for all of these products that are installed,
select Help > Block Support Table > All Tables.

In previous releases, Help > Block Support Table provided such tables
only for the main Simulink library.

Unified Simulation and Embeddable Code Generation Options
You can now specify both simulation and embeddable code generation options
in the Configuration Parameters dialog box. The simulation options apply
only to Embedded MATLAB Function blocks, Stateflow charts, and Truth
Table blocks.

The following table summarizes changes that apply for Embedded MATLAB
Function blocks:

Type of
Model

Simulation Options Embeddable Code Generation
Options

Nonlibrary Migrated from the Simulation Target
dialog box to the Configuration
Parameters dialog box.

See:

• “Nonlibrary Models: Changes for
the General Pane of the Simulation
Target Dialog Box” on page 188

New menu item in the Embedded
MATLAB Editor for specifying code
generation options for nonlibrary
models: Tools > Open RTW Target

New options in the Real-Time
Workshop pane of the Configuration
Parameters dialog box.

See:

186

Version 7.2 (R2008b) Simulink® Software

Type of
Model

Simulation Options Embeddable Code Generation
Options

• “Nonlibrary Models: Changes for the
Custom Code Pane of the Simulation
Target Dialog Box” on page 189

• “Nonlibrary Models: Changes for the
Description Pane of the Simulation
Target Dialog Box” on page 190

• “Nonlibrary Models: Enhancement
for the Real-Time Workshop:
Symbols Pane of the Configuration
Parameters Dialog Box” on page 199

• “Nonlibrary Models: Enhancement
for the Real-Time Workshop:
Custom Code Pane of the
Configuration Parameters Dialog
Box” on page 200

Library Migrated from the Simulation Target
dialog box to the Configuration
Parameters dialog box.

See:

• “Library Models: Changes for the
General Pane of the Simulation
Target Dialog Box” on page 194

• “Library Models: Changes for the
Custom Code Pane of the Simulation
Target Dialog Box” on page 195

• “Library Models: Changes for the
Description Pane of the Simulation
Target Dialog Box” on page 196

New menu item in Embedded MATLAB
Editor for specifying custom code
generation options for library models:
Tools > Open RTW Target

For a description of these options, see
“Library Models: Support for Specifying
Custom Code Options in the Real-Time
Workshop Pane of the Configuration
Parameters Dialog Box” on page 200.

For details about the new options, see “Configuration Parameters Dialog Box”
in the Simulink Graphical User Interface documentation. For compatibility
information, see “Compatibility Considerations” on page 206.

For changes specific to Stateflow, see “Unified Simulation and Embeddable
Code Generation Options for Stateflow Charts and Truth Table Blocks” in the
Stateflow and Stateflow Coder™ release notes.

187

Simulink® Release Notes

Nonlibrary Models: Changes for the General Pane of the Simulation
Target Dialog Box. The following sections describe changes in the panes of
the Simulation Target dialog box for nonlibrary models.

Release Appearance

Previous General pane of the Simulation Target dialog box

New Simulation Target pane of the Configuration Parameters dialog box

188

Version 7.2 (R2008b) Simulink® Software

For details, see “Nonlibrary Models: Mapping of GUI Options from the
Simulation Target Dialog Box to the Configuration Parameters Dialog Box”
on page 191.

Nonlibrary Models: Changes for the Custom Code Pane of the
Simulation Target Dialog Box.

Release Appearance

Previous Custom Code pane of the Simulation Target dialog box

New Simulation Target > Symbols pane of the Configuration Parameters dialog box

New Simulation Target > Custom Code pane of the Configuration Parameters dialog
box

189

Simulink® Release Notes

Release Appearance

For details, see “Nonlibrary Models: Mapping of GUI Options from the
Simulation Target Dialog Box to the Configuration Parameters Dialog Box”
on page 191.

Nonlibrary Models: Changes for the Description Pane of the
Simulation Target Dialog Box. In previous releases, the Description
pane of the Simulation Target dialog box appeared as follows.

190

Version 7.2 (R2008b) Simulink® Software

In R2008b, these options are no longer available. For older models where the
Description pane contained information, the text is now accessible only in
the Model Explorer. When you select Simulink Root > Configuration
Preferences in the Model Hierarchy pane, the text appears in the
Description field for that model.

Nonlibrary Models: Mapping of GUI Options from the Simulation
Target Dialog Box to the Configuration Parameters Dialog Box.
For nonlibrary models, the following table maps each GUI option in
the Simulation Target dialog box to the equivalent in the Configuration
Parameters dialog box. The options are listed in order of appearance in the
Simulation Target dialog box.

191

Simulink® Release Notes

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

General > Enable
debugging / animation

Simulation Target > Enable
debugging / animation

on

General > Enable overflow
detection (with debugging)

Simulation Target > Enable
overflow detection (with
debugging)

on

General > Echo expressions
without semicolons

Simulation Target >
Echo expressions without
semicolons

on

General > Build Actions Simulation Target >
Simulation target build
mode

Incremental build

None Simulation Target >
Custom Code > Source file

''

Custom Code > Include
Code

Simulation Target >
Custom Code > Header file

''

Custom Code > Include
Paths

Simulation Target >
Custom Code > Include
directories

''

Custom Code > Source
Files

Simulation Target >
Custom Code > Source files

''

Custom Code > Libraries Simulation Target >
Custom Code > Libraries

''

Custom Code >
Initialization Code

Simulation Target >
Custom Code > Initialize
function

''

Custom Code >
Termination Code

Simulation Target >
Custom Code > Terminate
function

''

Custom Code > Reserved
Names

Simulation Target >
Symbols > Reserved names

{}

192

Version 7.2 (R2008b) Simulink® Software

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

Custom Code > Use these
custom code settings for all
libraries

None Not applicable

Description > Description None

Note If you load an older
model that contained
user-specified text in the
Description field, that
text now appears in the
Model Explorer. When you
select Simulink Root >
Configuration Preferences
in the Model Hierarchy
pane, the text appears in the
Description field for that
model.

Not applicable

Description > Document
Link

None Not applicable

Note For nonlibrary models, Simulation Target options in the
Configuration Parameters dialog box are also available in the Model Explorer.
When you select Simulink Root > Configuration Preferences in the
Model Hierarchy pane, you can select Simulation Target in the Contents
pane to access the options.

193

Simulink® Release Notes

Library Models: Changes for the General Pane of the Simulation
Target Dialog Box. In previous releases, the General pane of the
Simulation Target dialog box for library models appeared as follows.

In R2008b, these options are no longer available. All library models inherit
these option settings from the main model to which the libraries are linked.

194

Version 7.2 (R2008b) Simulink® Software

Library Models: Changes for the Custom Code Pane of the Simulation
Target Dialog Box.

Release Appearance

Previous Custom Code pane of the Simulation Target dialog box

New Simulation Target pane of the Configuration Parameters dialog box

195

Simulink® Release Notes

For details, see “Library Models: Mapping of GUI Options from the Simulation
Target Dialog Box to the Configuration Parameters Dialog Box” on page 197.

Library Models: Changes for the Description Pane of the Simulation
Target Dialog Box. In previous releases, the Description pane of the
Simulation Target dialog box appeared as follows.

In R2008b, these options are no longer available. For older models where the
Description pane contained information, the text is discarded.

196

Version 7.2 (R2008b) Simulink® Software

Library Models: Mapping of GUI Options from the Simulation Target
Dialog Box to the Configuration Parameters Dialog Box. For library
models, the following table maps each GUI option in the Simulation Target
dialog box to the equivalent in the Configuration Parameters dialog box. The
options are listed in order of appearance in the Simulation Target dialog box.

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

General > Enable
debugging / animation

None Not applicable

General > Enable overflow
detection (with debugging)

None Not applicable

General > Echo expressions
without semicolons

None Not applicable

General > Build Actions None Not applicable

None Simulation Target > Source
file

''

Custom Code > Include
Code

Simulation Target >Header
file

''

Custom Code > Include
Paths

Simulation Target >
Include directories

''

Custom Code > Source
Files

Simulation Target > Source
files

''

Custom Code > Libraries Simulation Target >
Libraries

''

Custom Code >
Initialization Code

Simulation Target >
Initialize function

''

Custom Code >
Termination Code

Simulation Target >
Terminate function

''

Custom Code > Reserved
Names

None Not applicable

197

Simulink® Release Notes

Old Option in the
Simulation Target Dialog
Box

New Option in the
Configuration Parameters
Dialog Box

Default Value of New
Option

Custom Code > Use local
custom code settings (do
not inherit from main
model)

Simulation Target > Use
local custom code settings
(do not inherit from main
model)

off

Description > Description None Not applicable

Description > Document
Link

None Not applicable

Note For library models, Simulation Target options in the Configuration
Parameters dialog box are not available in the Model Explorer.

198

Version 7.2 (R2008b) Simulink® Software

Nonlibrary Models: Enhancement for the Real-Time Workshop:
Symbols Pane of the Configuration Parameters Dialog Box. In
previous releases, the Real-Time Workshop > Symbols pane of the
Configuration Parameters dialog box appeared as follows.

In R2008b, a new option is available in this pane: Reserved names. You
can use this option to specify a set of keywords that the Real-Time Workshop
build process should not use. This action prevents naming conflicts between
functions and variables from external environments and identifiers in the
generated code.

You can also choose to use the reserved names specified in the Simulation
Target > Symbols pane to avoid entering the same information twice for
the nonlibrary model. Select the option Use the same reserved names as
Simulation Target.

199

Simulink® Release Notes

Nonlibrary Models: Enhancement for the Real-Time Workshop:
Custom Code Pane of the Configuration Parameters Dialog Box. In
previous releases, the Real-Time Workshop > Custom Code pane of the
Configuration Parameters dialog box appeared as follows.

In R2008b, a new option is available in this pane: Use the same custom
code settings as Simulation Target. You can use this option to copy the
custom code settings from the Simulation Target > Custom Code pane to
avoid entering the same information twice for the nonlibrary model.

Library Models: Support for Specifying Custom Code Options in the
Real-Time Workshop Pane of the Configuration Parameters Dialog
Box. In R2008b, you can specify custom code options in the Configuration
Parameters dialog box, as shown:

200

Version 7.2 (R2008b) Simulink® Software

For more information, see “Code Generation Pane: Custom Code” in the
Real-Time Workshop Reference documentation.

Mapping of Target Object Properties to Parameters in the
Configuration Parameters Dialog Box
Previously, you could programmatically set options for simulation and
embeddable code generation of models containing Embedded MATLAB
Function blocks, Stateflow charts, or Truth Table blocks by accessing the API
properties of Target objects sfun and rtw, respectively. In R2008b, the API
properties of Target objects sfun and rtw are replaced by parameters that you
configure using the commands get_param and set_param.

For compatibility details, see “Compatibility Considerations” on page 206.

201

Simulink® Release Notes

Mapping of Object Properties to Simulation Parameters for
Nonlibrary Models. The following table maps API properties of the Target
object sfun for nonlibrary models to the equivalent parameters in R2008b.
Object properties are listed in alphabetical order; those not listed in the table
do not have equivalent parameters in R2008b.

Old sfun Object Property Old Option
in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

CodeFlagsInfo
('debug')

General
> Enable
debugging /
animation

SFSimEnableDebug

string - off, on

Simulation
Target > Enable
debugging /
animation

CodeFlagsInfo
('overflow')

General
> Enable
overflow
detection
(with
debugging)

SFSimOverflowDetection

string - off, on

Simulation
Target > Enable
overflow
detection (with
debugging)

CodeFlagsInfo
('echo')

General
> Echo
expressions
without
semicolons

SFSimEcho

string - off, on

Simulation
Target > Echo
expressions
without
semicolons

CustomCode Custom Code
> Include
Code

SimCustomHeaderCode

string - ''

Simulation
Target >
Custom Code
> Header file

CustomInitializer Custom
Code >
Initialization
Code

SimCustomInitializer

string - ''

Simulation
Target >
Custom Code
> Initialize
function

202

Version 7.2 (R2008b) Simulink® Software

Old sfun Object Property Old Option
in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

CustomTerminator Custom
Code >
Termination
Code

SimCustomTerminator

string - ''

Simulation
Target >
Custom Code
> Terminate
function

ReservedNames Custom Code
> Reserved
Names

SimReservedNameArray

string array - {}

Simulation
Target >
Symbols >
Reserved
names

UserIncludeDirs Custom Code
> Include
Paths

SimUserIncludeDirs

string - ''

Simulation
Target >
Custom Code
> Include
directories

UserLibraries Custom Code
> Libraries

SimUserLibraries

string - ''

Simulation
Target >
Custom Code
> Libraries

UserSources Custom Code
> Source Files

SimUserSources

string - ''

Simulation
Target >
Custom Code
> Source files

Mapping of Object Properties to Simulation Parameters for Library
Models. The following table maps API properties of the Target object sfun
for library models to the equivalent parameters in R2008b. Object properties
are listed in alphabetical order; those not listed in the table do not have
equivalent parameters in R2008b.

203

Simulink® Release Notes

Old sfun Object Property Old Option
in the
Simulation
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

CustomCode Custom Code
> Include
Code

SimCustomHeaderCode

string - ''

Simulation
Target >Header
file

CustomInitializer Custom
Code >
Initialization
Code

SimCustomInitializer

string - ''

Simulation
Target >
Initialize
function

CustomTerminator Custom
Code >
Termination
Code

SimCustomTerminator

string - ''

Simulation
Target >
Terminate
function

UseLocalCustomCodeSettings Custom Code
> Use local
custom code
settings (do
not inherit
from main
model)

SimUseLocalCustomCode

string - off, on

Simulation
Target > Use
local custom
code settings
(do not inherit
from main
model)

UserIncludeDirs Custom Code
> Include
Paths

SimUserIncludeDirs

string - ''

Simulation
Target >
Include
directories

UserLibraries Custom Code
> Libraries

SimUserLibraries

string - ''

Simulation
Target >
Libraries

UserSources Custom Code
> Source Files

SimUserSources

string - ''

Simulation
Target > Source
files

204

Version 7.2 (R2008b) Simulink® Software

Mapping of Object Properties to Code Generation Parameters for
Library Models. The following table maps API properties of the Target
object rtw for library models to the equivalent parameters in R2008b. Object
properties are listed in alphabetical order; those not listed in the table do not
have equivalent parameters in R2008b.

Old rtw Object Property Old Option
in the RTW
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

CustomCode Custom Code
> Include
Code

CustomHeaderCode

string - ''

Real-Time
Workshop >
Header file

CustomInitializer Custom
Code >
Initialization
Code

CustomInitializer

string - ''

Real-Time
Workshop
> Initialize
function

CustomTerminator Custom
Code >
Termination
Code

CustomTerminator

string - ''

Real-Time
Workshop >
Terminate
function

UseLocalCustomCodeSettings Custom Code
> Use local
custom code
settings (do
not inherit
from main
model)

RTWUseLocalCustomCode

string - off, on

Real-Time
Workshop > Use
local custom
code settings
(do not inherit
from main
model)

UserIncludeDirs Custom Code
> Include
Paths

CustomInclude

string - ''

Real-Time
Workshop
> Include
directories

205

Simulink® Release Notes

Old rtw Object Property Old Option
in the RTW
Target Dialog
Box

New Configuration
Parameter

New Option
in the
Configuration
Parameters
Dialog Box

UserLibraries Custom Code
> Libraries

CustomLibrary

string - ''

Real-Time
Workshop >
Libraries

UserSources Custom Code
> Source
Files

CustomSource

string - ''

Real-Time
Workshop >
Source files

Compatibility Considerations. When you load and save older models in
R2008b, not all target property settings are preserved.

What Happens When You Load an Older Model in R2008b

When you use R2008b to load a model created in an earlier version, dialog box
options and the equivalent object properties for simulation and embeddable
code generation targets migrate automatically to the Configuration
Parameters dialog box, except in the cases that follow.

For the simulation target (sfun) of a nonlibrary model, these options and
properties do not migrate to the Configuration Parameters dialog box.

206

Version 7.2 (R2008b) Simulink® Software

Option in the Simulation Target Dialog
Box of a Nonlibrary Model

Equivalent Object Property

Custom Code > Use these custom code
settings for all libraries

ApplyToAllLibs

Description > Description Description

Note If you load an older model that contained
user-specified text in the Description
field, that text now appears in the Model
Explorer. When you select Simulink Root >
Configuration Preferences in the Model
Hierarchy pane, the text appears in the
Description field for that model.

Description > Document Link Document

For the simulation target (sfun) of a library model, these options and
properties do not migrate to the Configuration Parameters dialog box.

Option in the Simulation Target Dialog
Box of a Library Model

Equivalent Object Property

General > Enable debugging / animation CodeFlagsInfo('debug')

General > Enable overflow detection
(with debugging)

CodeFlagsInfo('overflow')

General > Echo expressions without
semicolons

CodeFlagsInfo('echo')

General > Build Actions None

Custom Code > Reserved Names ReservedNames

Description > Description Description

Description > Document Link Document

207

Simulink® Release Notes

For the embeddable code generation target (rtw) of a library model, these
options and properties do not migrate to the Configuration Parameters dialog
box.

Option in the RTW Target Dialog Box of
a Library Model

Equivalent Object Property

General > Comments in generated code CodeFlagsInfo('comments')

General > Use bitsets for storing state
configuration

CodeFlagsInfo('statebitsets')

General > Use bitsets for storing boolean
data

CodeFlagsInfo('databitsets')

General > Compact nested if-else using
logical AND/OR operators

CodeFlagsInfo('emitlogicalops')

General > Recognize if-elseif-else in
nested if-else statements

CodeFlagsInfo('elseifdetection')

General > Replace constant expressions
by a single constant

CodeFlagsInfo('constantfolding')

General > Minimize array reads using
temporary variables

CodeFlagsInfo('redundantloadelimination')

General > Preserve symbol names CodeFlagsInfo('preservenames')

General > Append symbol names with
parent names

CodeFlagsInfo('preservenameswithparent')

General > Use chart names with no
mangling

CodeFlagsInfo('exportcharts')

General > Build Actions None

Custom Code > Reserved Names ReservedNames

Description > Description Description

Description > Document Link Document

208

Version 7.2 (R2008b) Simulink® Software

What Happens When You Save an Older Model in R2008b

When you use R2008b to save a model created in an earlier version,
parameters for simulation and embeddable code generation from the
Configuration Parameters dialog box are saved. However, properties of API
Target objects sfun and rtw are not saved if those properties do not have an
equivalent parameter in the Configuration Parameters dialog box. In R2008b,
this behavior applies even if you choose to save the model as an older version
(for example, R2007a).

New Parameters in the Configuration Parameters Dialog Box
for Simulation and Embeddable Code Generation
In R2008b, new parameters are added to the Configuration Parameters dialog
box for simulation and embeddable code generation of models that contain
Embedded MATLAB Function blocks, Stateflow charts, or Truth Table blocks.

New Simulation Parameters for Nonlibrary Models. The following
table lists the new simulation parameters that apply to nonlibrary models.

New Configuration
Parameter

New Option in the
Configuration Parameters
Dialog Box

Description

SimBuildMode

string –
sf_incremental_build,
sf_nonincremental_build,
sf_make, sf_make_clean,
sf_make_clean_objects

Simulation Target >
Simulation target build
mode

Specifies how you build the
simulation target for a model.

SimCustomSourceCode

string - ''

Simulation Target >
Custom Code > Source file

Enter code lines to appear
near the top of a generated
source code file.

New Simulation Parameter for Library Models. The following table lists
the new simulation parameter that applies to library models.

209

Simulink® Release Notes

New Configuration
Parameter

New Option in the
Configuration Parameters
Dialog Box

Description

SimCustomSourceCode

string - ''

Simulation Target > Source
file

Enter code lines to appear
near the top of a generated
source code file.

New Code Generation Parameters for Nonlibrary Models. The
following table lists the new code generation parameters that apply to
nonlibrary models.

New Configuration
Parameter

New Option in the
Configuration Parameters
Dialog Box

Description

ReservedNameArray

string array - {}

Real-Time Workshop >
Symbols > Reserved names

Enter the names of variables
or functions in the generated
code that match the names of
variables or functions specified
in custom code.

RTWUseSimCustomCode

string – off, on

Real-Time Workshop >
Custom Code > Use the
same custom code settings
as Simulation Target

Specify whether to use the
same custom code settings as
those specified for simulation.

UseSimReservedNames

string – off, on

Real-Time Workshop
> Symbols > Use the
same reserved names as
Simulation Target

Specify whether to use the
same reserved names as those
specified for simulation.

New Code Generation Parameters for Library Models. The following
table lists the new code generation parameters that apply to library models.

210

Version 7.2 (R2008b) Simulink® Software

New Configuration
Parameter

New Option in the
Configuration Parameters
Dialog Box

Description

CustomSourceCode

string – ''

Real-Time Workshop >
Source file

Enter code lines to appear
near the top of a generated
source code file.

RTWUseSimCustomCode

string – off, on

Real-Time Workshop >
Use the same custom code
settings as Simulation
Target

Specify whether to use the
same custom code settings as
those specified for simulation.

S-Functions

Ada S-Functions
In future releases, Simulink will not have a built-in Ada S-function capability.
As a mitigation strategy, call Ada code from Simulink using standard Ada
95 language features and the Simulink C-MEX S-function API. For details of
this process, please contact Technical Support at MathWorks.

Legacy Code Tool Enhancement
The Legacy Code Tool data structure has been enhanced with a new
S-function options field, singleCPPMexFile, which when set to true

• Requires you to generate and manage an inlined S-function as only one file
(.cpp) instead of two (.c and .tlc)

• Maintains model code style—level of parentheses usage and preservation
of operand order in expressions and condition expressions in if
statements—as specified by model configuration parameters.

When you choose not to use this option, code generated by the Legacy Code
Tool does not reflect code style configuration settings and requires you to
manage C-MEX and TLC files.

For more information, see:

211

Simulink® Release Notes

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Writing S-Functions documentation

• “Legacy Code Tool Code Insertion” in the Real-Time Workshop
documentation

• legacy_code function reference page

Compatibility Considerations.

• If you upgrade from an earlier release, you can continue to use S-functions
generated from the Legacy Code Tool available in earlier releases. You can
continue to compile the S-function source code and you can continue to use
the compiled output from an earlier release without recompiling the code.

• If you set the new singleCPPMexFile options field to true, when creating
an S-function, you cannot use that S-function, in source or compiled form,
with versions of Simulink earlier than Version 7.2 (R2008b).

MATLAB Changes Affecting Simulink

Changes to MATLAB Startup Options
The matlab command line arguments -memmgr and -check_malloc are
deprecated and will be removed in a future release.

For more information, see “Changes to matlab Memory Manager Startup
Options” in the MATLAB Release Notes.

Handle Graphics Not Supported Under -nojvm Startup Option
If you start MATLAB using the command matlab -nojvm (which disables
Java), you will receive warnings when using many graphical tools, for
example, when you create figures, print Simulink models, or view Simulink
scopes.

For more information, see Changes to -nojvm Startup Option in the Desktop
Tools and Development Environment release notes.

212

Version 7.1 (R2008a) Simulink® Software

Version 7.1 (R2008a) Simulink Software
This table summarizes what’s new in V7.1 (R2008a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 213

• “Component-Based Modeling” on page 214

• “Embedded MATLAB Function Blocks” on page 215

• “Data Management” on page 216

• “Simulink File Management” on page 221

• “Block Enhancements” on page 222

• “User Interface Enhancements” on page 224

• ““What’s This?” Context-Sensitive Help Available for Simulink
Configuration Parameters Dialog” on page 226

• “S-Functions” on page 227

Simulation Performance

Rapid Accelerator
Improved Rapid Accelerator sim-command performance when running long
simulations of small models on Microsoft Windows platforms.

Long Rapid Accelerator mode simulations of small models invoked by the sim
command under the Microsoft Windows operating system now run faster.

213

http://www.mathworks.com/support/bugreports/?product=SL&release=R2008a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2008a

Simulink® Release Notes

Additional Zero Crossing Algorithm
A second zero crossing algorithm that is especially useful in systems exhibiting
strong chattering behavior has been added for use with variable step solvers.

The new algorithm is selected by choosing Adaptive from the Zero crossing
location algorithm option in the Solver pane of the Configuration Parameter
dialog. The default algorithm is Non-Adaptive, which is the algorithm used
prior to this release.

For more information, see “Zero-Crossing Algorithms”.

Component-Based Modeling

Efficient Parent Model Rebuilds
In previous releases, changing a referenced model that executed in Accelerator
mode or was used for code generation triggered rebuilding every model that
directly or indirectly referenced the changed model. The rebuilding occurred
even if the change to the referenced model had no effect on its interface
to its parent(s).

In R2008a, changing a referenced model that executes in Accelerator mode
or is used for code generation triggers rebuilding a parent model only when
the change directly affects the referenced model’s interface to the parent
model. This behavior eliminates unnecessary code regeneration, which can
significantly reduce the time needed to update a diagram.

The faster diagram update has no effect on simulation behavior or
performance, but may change the messages that appear in the MATLAB
Command Window. See “Referencing a Model” for information about model
referencing.

Scalar Root Inputs Passed Only by Reference
The Configuration Parameters > Model Referencing > Pass scalar root
inputs by value option is Off by default, indicating that scalar root inputs
are passed by reference. In previous releases, setting the option to On affected
both simulation and generated code, and caused scalar root inputs to be
passed by value. In R2008a, the option has no effect on simulation: scalar root

214

Version 7.1 (R2008a) Simulink® Software

inputs are now always passed by reference, regardless of the setting of Pass
scalar root inputs by value. The effect of the option on code generation is
the same as in previous releases. See “Pass fixed-size scalar root inputs by
value for code generation” for more information.

Unlimited Referenced Models
In previous releases, Microsoft Windows imposed a limit on the number of
models that could be referenced in Accelerator mode in a model hierarchy.
This limitation is removed in R2008a. Under Microsoft Windows, as on all
other platforms, the number of referenced models that can appear in a model
hierarchy is effectively unlimited. See “Referencing a Model” for information
about model referencing.

Embedded MATLAB Function Blocks

Nontunable Structure Parameters
Embedded MATLAB Function blocks now support nontunable MATLAB
structure parameters. For more information, see “Working with Structure
Parameters in MATLAB Function Blocks”.

Bidirectional Traceability
You can navigate between a line of generated code and its corresponding line
of source code in Embedded MATLAB Function blocks. For more information,
see “Using Traceability in MATLAB Function Blocks”.

Specify Scaling Explicitly for Fixed-Point Data
When you define data of fixed-point type in Embedded MATLAB Function
blocks, you must specify the scaling explicitly in the General pane of the
Data properties dialog box. For example, you cannot enter an incomplete
specification such as fixdt(1,16) in the Type field. If you do not specify
scaling explicitly, you will see an error message when you try to simulate
your model.

To ensure that the data type definition is valid for fixed-point data, perform
one of these steps in the General pane of the Data properties dialog box:

215

Simulink® Release Notes

• Use a predefined option in the Type drop-down menu.

• Use the Data Type Assistant to specify the Mode as fixed-point.

Compatibility Considerations. Previously, you could omit scaling in
data type definitions for fixed-point data. Such data types were treated as
integers with the specified sign and word length. This behavior has changed.
Embedded MATLAB Function blocks created in earlier versions may now
generate errors if they contain fixed-point data with no scaling specified.

Data Management

Array Format Cannot Be Used to Export Multiple Matrix Signals
When you export signals to a workspace in Array format from more than one
outport, none of the signals can be a matrix signal. In previous releases,
violating this rule did not always cause an error, but the matrix data was not
exported correctly. In R2008a, violating the rule always causes an error,
and no data export occurs.

When exporting data to a workspace in Array format from multiple outports,
use a Reshape block to convert any matrix signal to a one-dimensional (1-D)
array. This restriction applies only to Array format. If you specify either
Structure or Structure with time format, you can export matrix signals
to a workspace from multiple outports without first converting the signals to
vectors.

Compatibility Considerations. The more stringent error checking in
R2008a can cause models that export data in Array format from multiple
outports to generate errors rather than silently exporting matrix data
incorrectly. To eliminate such errors, use a Reshape block to convert any
matrix signal to a vector, or switch to Structure or Structure with time
format. See “Exporting Simulation Data” for information about data export.

Bus Editor Upgraded
The Simulink Bus Editor has been reimplemented to provide a GUI interface
similar to that of the Model Explorer, and to provide several new capabilities,
including importing/exporting data from MAT-files and M-files, defining bus

216

Version 7.1 (R2008a) Simulink® Software

objects and elements with the Data Type Assistant, and creating and viewing
bus hierarchies (nested bus objects). See “Using the Bus Editor” for details.

Changing Nontunable Values Does Not Affect the Current
Simulation
In previous releases, changing the value of any variable or parameter during
simulation took effect immediately. In R2008a, only changes to tunable
variables and parameters take effect immediately. Other changes have no
effect until the next simulation begins. This modification causes simulation
behavior to match generated code behavior when the values of nontunable
variables and parameters change, and it improves efficiency by eliminating
unnecessary re-evaluation. For information about parameter tuning, see
“Tunable Parameters” and “Using Tunable Parameters”.

Compatibility Considerations. In R2008a, simulation behavior will differ
if the behavior in a previous release depended on changing any nontunable
variable or parameter during simulation. To regain the previous behavior,
define as tunable any nontunable variable or parameter that you want to
change during simulation for the purpose of affecting simulation immediately.

Detection of Illegal Rate Transitions
Illegal rate transitions between a block and a triggered subsystems or function
call subsystems are now detected when the block is connected to a Unit Delay
or Zero Hold block inside a triggered subsystem.

Compatibility Considerations. In this release, Simulink detects illegal rate
transition errors when the block sample time is different from the triggered
subsystem sample time in those models where the block is connected to a Unit
Delay or Zero Hold block inside the triggered subsystem.

Explicit Scaling Required for Fixed-Point Data
In R2008a, when you define a fixed-point data type in a Simulink model, you
must explicitly specify the scaling unless the block supports either integer
scaling mode or best-precision scaling mode. If a block supports neither of
these modes, you cannot define an incomplete fixed-point data type like
fixdt(1,16), which specifies no scaling. See “Specifying a Fixed-Point Data
Type” and “Showing Fixed-Point Details” for information about defining
fixed-point data types.

217

Simulink® Release Notes

Compatibility Considerations. In previous releases, you could define
a fixed-point data type that specified no scaling in a block that supported
neither integer scaling mode nor best-precision scaling mode. The Simulink
software posted no warning, and treated fixed-point data type as an integer
data type with the specified word length. For example, fixdt(1,16) was
treated as fixdt(1,16,0).

In R2008a, a fixed-point data type definition that specifies no scaling
generates an error unless the block supports either integer scaling mode
or best-precision scaling mode. If such an error occurs when you compile a
model from an earlier Simulink version, redefine the incomplete fixed-point
data type to be an integer type if nothing more is needed, or to be scaled
appropriately for its value range.

Fixed-Point Details Display Available
The Data Type Assistant can now display the status and details of fixed-point
data types. See “Specifying a Fixed-Point Data Type” and “Showing
Fixed-Point Details” for more information.

More than 2GB of Simulation Data Can be Logged on 64-Bit
Platforms
When you log time, states, final states, and signals on a 64-bit platform, you
can now save more simulation data in the MATLAB base workspace than
was previously possible.

• When you log data using the Structure, Structure with time, or
Timeseries format, you can now save up to 2^48-1 bytes in each field
that contains logged data.

• When you log data using Array format, you can now save up to 2^48-1
bytes in each array that contains logged data.

Previously the limit was 2^31-1 bytes in each field or array containing
logged data. See “Exporting Signal Data Using Signal Logging” and “Data
Import/Export Pane” for information about logging data.

218

Version 7.1 (R2008a) Simulink® Software

Order of Simulink and MPT Parameter and Signal Fields
Changed
The order of the fields in the Simulink.Parameter and Simulink.Signal
classes, and in their respective subclasses mpt.Parameter and mpt.Signal,
has changed in R2008a.

The order for Simulink.Parameter (and mpt.Parameter) is now:

Simulink.Parameter (handle)
Value: []

RTWInfo: [1x1 Simulink.ParamRTWInfo]
Description: ''

DataType: 'auto'
Min: -Inf
Max: Inf

DocUnits: ''
Complexity: 'real'
Dimensions: [0 0]

The order for Simulink.Signal (and mpt.Signal) is now:

Simulink.Signal (handle)
RTWInfo: [1x1 Simulink.SignalRTWInfo]

Description: ''
DataType: 'auto'

Min: -Inf
Max: Inf

DocUnits: ''
Dimensions: -1
Complexity: 'auto'
SampleTime: -1

SamplingMode: 'auto'
InitialValue: ''

Loading a model that uses any Simulink.Parameter or mpt.Parameter
objects, and was saved in a release prior to R2008a, may post an Inconsistent
Data warning in the MATLAB Command Window. This message does not
indicate a problem with the model, which need not be changed. Resave the
model in R2008a to update it to use the new parameter class definitions. The
warning will not appear when you reopen the model.

219

Simulink® Release Notes

Range Checking for Complex Numbers
Previous releases did not provide range checking for complex numbers, and
attempting it generated an error. In R2008a, you can specify a minimum
and/or maximum value for a complex number wherever range checking is
available and a complex number is a legal value.

The specified minimum and maximum values apply separately to the real
part and to the imaginary part of the complex number. If the value of either
part of the number is less than the minimum, or greater than the maximum,
the complex number is outside the specified range.

No range checking occurs against any combination of the real and imaginary
parts, such as (sqrt(a^2+b^2)). See “Checking Parameter Values” and
“Signal Ranges” for information about range checking.

Rate Transition Blocks Needed on Virtual Buses
In this release, Simulink never automatically inserts a Rate Transition block
into a virtual bus, even if Automatically handle rate transfer is selected.
Instead, an error is displayed indicating that a Rate Transition block must
be manually inserted.

Compatibility Considerations. Some models that worked in previous
releases, but were dependent on automatic Rate Transition block insertion,
will now report an error and will no longer run. An error will be reported if
all of these apply:

• The Automatically handle rate transfer option is enabled

• The model is multirate

• The model has a virtual bus, all of the elements on the bus have the same
data type, and the sample time changes

• A bus selector block is not present on the virtual bus at a point after the
sample time changes

• The only way to address the rate transition problem is to insert a rate
transition block

220

Version 7.1 (R2008a) Simulink® Software

Sample Times for Virtual Blocks
In models with asynchronous function calls, some virtual blocks now correctly
assign generic sample times instead of triggered sample times.

Compatibility Considerations. The CompiledSampleTime parameter now
reports the compiled sample time as generic sample time (that is, [-1, -inf])
rather than triggered sample time ([-1,-1]) for virtual blocks for which all
of the flowing is true:

• The virtual block is downstream from an asynchronous source

• The virtual block is not inside a triggered subsystem

• The virtual block had a triggered ([-1,-1]) sample time in previous releases

The simulation results, code generation, and sample time colors are not
affected by this change.

Signals Needing Resolution Are Graphically Indicated
In R2008a, the Simulink Editor by default graphically indicates signals that
must resolve to signal objects. For any labeled signal whose Signal name
must resolve to signal object property is enabled, a signal resolution icon
appears to the left of the signal name. The icon looks like this:

A signal resolution icon indicates only that a signal’s Signal name must
resolve to signal object property is enabled. The icon does not indicate
whether the signal is actually resolved, and does not appear on a signal that
is implicitly resolved without its Signal name must resolve to signal
object property being enabled. See “Signal Resolution Indicators” for more
information.

Simulink File Management

Autosave
New Autosave option automatically creates a backup copy of models before
updating or simulating. If you open or load a model which has a more recent

221

Simulink® Release Notes

autosave copy available, a dialog appears where you can choose to overwrite
the original model file with the autosave copy.

You can set the Autosave option in the Simulink Preferences Window. See
Autosave in the Simulink Graphical User Interface documentation.

Old Version Notification
New option to notify when loading a model saved in a previous version of
Simulink software.

You can set this option in the Simulink Preferences Window. See “Simulink
Preferences Window: Main Pane” in the Simulink Graphical User Interface
documentation.

Model Dependencies Tools
Enhanced file dependency analysis now also detects:

• TLC files required by S-functions.

• .fig files created by GUIDE.

• Files referenced by common data loading functions. File names passed to
xlsread, importdata, dlmread, csvread, wk1read, and textread are now
identified, in addition to the existing capability for load, fopen and imread.

See “Scope of Dependency Analysis” in the Using Simulink documentation.

Block Enhancements

New Discrete FIR Filter Block Replaces Weighted Moving
Average Block
The Discrete FIR Filter block in the Discrete library is new for this release.
This block independently filters each channel of the input signal with the
specified digital FIR filter. The Discrete FIR Filter block replaces the
Weighted Moving Average block.

222

Version 7.1 (R2008a) Simulink® Software

Compatibility Considerations. You should replace Weighted Moving
Average blocks in your existing models with the Discrete FIR Filter block. To
do this, run the slupdate command on your models.

Rate Transition Block Enhancements
Support for Rate Transition blocks has been enhanced in the following ways:

• Rate Transition block output port sample time now can be specified as
a multiple of input port sample time, using the new Rate Transition
block parameters Output port sample time options and Sample
time multiple (>0). See the Rate Transition block documentation in the
Simulink Reference for more information.

• In previous releases, auto-insertion of Rate Transition blocks was selected
for a model using the option Automatically handle data transfers
between tasks on the Solver pane of the Configuration Parameters
dialog box. When selected, auto-insertion always ensured data transfer
determinism for periodic tasks.

This release allows you to control the level of data transfer determinism
when auto-insertion of Rate Transition blocks is selected for your model.
The Solver pane option for selecting auto-insertion has been renamed to
Automatically handle rate transition for data transfer. Selecting
auto-insertion now enables a new option, Deterministic data transfer.
Selecting Never (minimum delay) or Whenever possible for this option
can provide reduced latency for models that do not require determinism.
See the “Solver Pane” section in the Simulink Graphical User Interface
documentation for more information.

• Auto-insertion of Rate Transition blocks is now supported for additional
rate transitions, such as sample times with nonzero offset, and between
non-integer-multiple sample times.

Enhanced Lookup Table (n-D) Block
The Lookup Table (n-D) block now supports all data types, complex table
data, and nonscalar inputs. See the Lookup Table (n-D) block documentation
in the Simulink Reference for more information.

223

Simulink® Release Notes

New Accumulator Parameter on Sum Block
The Sum block dialog box displays a new parameter for specifying the data
type of its accumulator. See the Sum block documentation in the Simulink
Reference for more information.

User Interface Enhancements

Simulink Library Browser
A new version of the Simulink Library browser has the following
enhancements:

• Now available on all platforms supported by Simulink software.

• Improved performance for browsing and searching of libraries, by allowing
these operations to proceed without actually loading the libraries.

• Enhanced search finds all blocks and displays search results in a separate
tab.

• New option to display library blocks in a compact grid layout that conserves
screen space.

Simulink Preferences Window
New unified Simulink Preferences window for configuring default settings.
The new Preferences window allows you to configure file change notifications,
autosave options, fonts, display options, and model configuration defaults.

See “Simulink Preferences Window: Main Pane” in the Simulink Graphical
User Interface documentation.

Model Advisor
In R2008a, the Model Advisor tool is enhanced with improved GUI navigation,
check analysis, and reports including:

• Reset option that reverts the status of all checks to Not Run while keeping
the current check selection.

• Model Advisor Result Explorer to make changes to your model.

224

Version 7.1 (R2008a) Simulink® Software

• Input Parameters to provide inputs to checks.

• Check results reported in the same order as the Model Advisor tree.

• The ability to generate reports for any folder.

• Timestamps in reports indicating when checks run at different times.

See “Consulting the Model Advisor” in the Simulink User’s Guide.

Solver Controls
Enhanced controls in the Solver pane of the Configuration Parameters dialog.
The Solver pane of the Configuration Parameters dialog has been changed as
follows:

• The Solver diagnostic controls pane has been removed and two new
panes have been added (Tasking and sample time options, and Zero
crossing options)

• The Automatically handle data transfers between tasks control has
been moved to the Tasking and sample time options pane, and has been
renamed Automatically handle rate transition for data transfer

• The Higher priority value indicates higher task priority control
has been moved to the Tasking and sample time options pane

• The Number of consecutive min step size violations allowed
control has been moved to the Solver options pane, and has been renamed
Consecutive min step size violations allowed

• The States shape preservation control has been added to the Solver
options pane

• The Consecutive zero crossings relative tolerance control has been
moved to the Zero crossing options pane

• The Number of consecutive zero crossings allowed control has been
moved to the Zero crossing options pane

• The Zero crossing control control has been moved to the Zero crossing
options pane

• The Zero crossing location algorithm control has been added to the
Zero crossing options pane

225

Simulink® Release Notes

• The Zero crossing location threshold control has been added to the
Zero crossing options pane

• Options that in previous releases were only visible when enabled are now
always visible. They are grayed when not enabled.

For more information on the Configuration parameters solver pane, see
“Solver Pane”.

Compatibility Considerations. The Solver pane of the Configuration
Parameter dialog has been restructured, and many parameters have moved
or been renamed. Please refer to the list of changes above for information on
specific parameters.

“What’s This?” Context-Sensitive Help Available for
Simulink Configuration Parameters Dialog
R2008a introduces “What’s This?” context-sensitive help for parameters
that appear in the Simulink Configuration Parameters dialog. This feature
provides quick access to a detailed description of the parameters, saving you
the time it would take to find the information in the Help browser.

To use the "What’s This?" help, do the following:

1 Place your cursor over the label of a parameter.

2 Right-click. A What’s This? context menu appears.

For example, the following figure shows the What’s This? context menu
appearing after a right-click on the Start time parameter in the Solver
pane.

3 Click What’s This? A context-sensitive help window appears showing a
description of the parameter.

226

Version 7.1 (R2008a) Simulink® Software

S-Functions

Simplified Level-2 M-File S-Function Template
New basic version of the Level-2 M-file S-function template
msfuntmpl_basic.m simplifies creating Level-2 M-file S-functions. See
“Writing Level-2 MATLAB S-Functions” in Writing S-Functions for more
information.

Compatibility Considerations
MATLAB V7.6 (R2008a) on Linus Torvalds’ Linux® platforms is now built
with a compiler that utilizes glibc version 2.3.6. To work with MATLAB V7.6
(R2008a), MEX-file S-functions compiled on a Linux platform must be rebuilt.

227

Simulink® Release Notes

Version 7.0 (R2007b) Simulink Software
This table summarizes what’s new in V7.0 (R2007b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
Includes fixes

New features and changes introduced in this version are organized by these
topics:

• “Simulation Performance” on page 228

• “Component-Based Modeling” on page 230

• “Embedded MATLAB Function Blocks” on page 231

• “Data Management” on page 232

• “Configuration Management” on page 235

• “Embedded Software Design” on page 236

• “Block Enhancements” on page 236

• “Usability Enhancements” on page 239

• “S-Functions” on page 239

Simulation Performance

Simulink Accelerator
Simulink® Accelerator™ has been incorporated into Simulink software, and a
new Rapid Accelerator mode has been added for faster simulation through
code generation technology. See “Accelerating Models” in Simulink User’s
Guide.

228

http://www.mathworks.com/support/bugreports/?product=SL&release=R2007b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007b

Version 7.0 (R2007b) Simulink® Software

Note When using From File blocks in Rapid Accelerator mode, the
corresponding MAT file must be in the current directory.

Compatibility Considerations. A license is no longer required to use the
Accelerator or Rapid Accelerator modes.

Simulink Profiler
Simulink Profiler has been incorporated into Simulink software for the
identification of simulation performance bottlenecks. See “Capturing
Performance Data” in Simulink User’s Guide.

Compiler Optimization Level
Simulink Accelerator mode, Rapid Accelerator mode, and model reference
simulation targets can now specify the compiler optimization level used
(choose between minimizing compilation time or simulation time). See
“Customizing the Build Process” in Simulink User’s Guide.

Compatibility Considerations. The new model configuration parameter
Compiler optimization level defaults to Optimizations off (faster
builds). As a result, you might notice shorter build times, but longer
execution times, compared to previous releases. However, any previously
defined custom compiler optimization options using OPT_OPTS will be honored,
and model behavior should be unchanged.

Variable-Step Discrete Solver
Simulink software has been enhanced to no longer take unnecessary time
steps at multiples of the maximum step size when using a variable-step
discrete solver.

Referenced Models Can Execute in Normal or Accelerator Mode
In previous releases, Simulink software executed all referenced models by
generating code for them and executing the generated code. In this release,
Simulink software can execute appropriately configured referenced models
interpretively. Such execution is called Normal mode execution, and execution
via generated code is now called Accelerator mode execution. The technique of

229

Simulink® Release Notes

executing a referenced model via generated code has not changed, but it did
not previously need a separate name because it was the only alternative.

Many restrictions that previously applied to all referenced model execution
now apply only to Accelerator mode execution, and are relaxed in Normal
mode. For example, some Simulink tools that did not work with referenced
models because they are incompatible with generated code can now be used
by executing the referenced model in Normal mode.

Normal mode also has some restrictions that do not apply to Accelerator
mode. For example, at most, one instance of a given model in a referenced
model hierarchy can execute in Normal mode. See “Referencing a Model”
in Simulink User’s Guide for information about using referenced models in
Normal and Accelerator mode.

Accelerator and Model Reference Targets Now Use Standard
Internal Functions
For more consistent simulation results, Simulink Accelerator mode, Rapid
Accelerator mode, and the model reference simulation target now perform
mathematical operations with the same internal functions that MATLAB
and Simulink products use.

Component-Based Modeling

New Instance View Option for the Model Dependency Viewer
The Model Dependency viewer has a new option to display each reference to
a model and indicate whether the reference is simulated in Accelerator or
Normal mode. See “Referencing a Model” and “Model Dependency Viewer” in
Simulink User’s Guide.

Mask Editor Now Requires Java
The Mask Editor now requires that the MATLAB product start with Java
enabled. See “Simulink Mask Editor” in Simulink User’s Guide.

Compatibility Considerations. You can no longer use the Mask Editor if
you start MATLAB with the -nojvm option.

230

Version 7.0 (R2007b) Simulink® Software

Embedded MATLAB Function Blocks

Complex and Fixed-Point Parameters
Embedded MATLAB Function blocks now support complex and fixed-point
parameters.

Support for Algorithms That Span Multiple M-Files
You can now generate embeddable code for external M-functions from
Embedded MATLAB function blocks. This feature allows you to call external
functions from multiple locations in an M-file or model and include these
functions in the generated code.

Compatibility Considerations. In previous releases, Embedded MATLAB
function blocks did not compile external M-functions, but instead dispatched
them to the MATLAB product for execution (after warning). Now, the default
behavior is to compile and generate code for external M-functions called from
Embedded MATLAB function blocks. If you do not want Embedded MATLAB
function blocks to compile external M-functions, you must explicitly declare
them to be extrinsic, as described in “Calling MATLAB Functions” in the
Embedded MATLAB documentation.

Loading R2007b Embedded MATLAB Function Blocks in Earlier
Versions of Simulink Software
If you save Embedded MATLAB Function blocks in R2007b, you will not be
able to load the corresponding model in earlier versions of Simulink software.
To work around this issue, save your model in the earlier version before
loading it, as follows:

1 In the Simulink Editor, select File > Save As.

2 In the Save as type field, select the version in which you want to load
the model.

For example, if you want to load the model in Simulink R2007a, select
Simulink 6.6/R2007a Models (*.mdl).

231

Simulink® Release Notes

Data Management

New Diagnostic for Continuous Sample Time on
Non-Floating-Point Signals
A new diagnostic detects continuous sample time on non-floating-point
signals.

New Standardized User Interface for Specifying Data Types
This release introduces a new standardized user interface, the Data Type
Assistant, for specifying data types associated with Simulink blocks and data
objects, as well as Stateflow data. See “Using the Data Type Assistant” in
Simulink User’s Guide for more information.

The Data Type Assistant appears on the dialogs of the following Simulink
blocks:

• Abs

• Constant

• Data Store Memory

• Data Type Conversion

• Difference

• Discrete Derivative

• Discrete-Time Integrator

• Dot Product

• MATLAB Function (formally called Embedded MATLAB Function)

• Gain

• Inport

• Interpolation Using Prelookup

• Logical Operator

• Lookup Table

• Lookup Table (2-D)

232

Version 7.0 (R2007b) Simulink® Software

• Lookup Table Dynamic

• Math Function

• MinMax

• Multiport Switch

• Outport

• Prelookup

• Product, Divide, Product of Elements

• Relational Operator

• Relay

• Repeating Sequence Interpolated

• Repeating Sequence Stair

• Saturation

• Saturation Dynamic

• Signal Specification

• Sum, Add, Subtract, Sum of Elements

• Switch

• Weighted Moving Average (obsolete — replaced by the Discrete FIR Filter
block)

The Data Type Assistant appears on the dialogs of the following Simulink
data objects:

• Simulink.BusElement

• Simulink.Parameter

• Simulink.Signal

New Block Parameters for Specifying Minimum and Maximum
Values
The following new block parameters are available for specifying the minimum
and maximum values of signals and other block parameters.

233

Simulink® Release Notes

• Output minimum, Minimum

• Output maximum, Maximum

• Parameter minimum

• Parameter maximum

These new parameters selectively appear on the dialogs of the following
Simulink blocks:

• Abs

• Constant

• Data Store Memory

• Data Type Conversion

• Difference

• Discrete Derivative

• Discrete-Time Integrator

• Gain

• Inport

• Interpolation Using Prelookup

• Lookup Table

• Lookup Table (2-D)

• Math Function

• MinMax

• Multiport Switch

• Outport

• Product, Divide, Product of Elements

• Relay

• Repeating Sequence Interpolated

• Repeating Sequence Stair

234

Version 7.0 (R2007b) Simulink® Software

• Saturation

• Saturation Dynamic

• Signal Specification

• Sum, Add, Subtract, Sum of Elements

• Switch

New Range Checking of Block Parameters
In this release, Simulink software performs range checking of parameters
associated with blocks that specify minimum and maximum values (see “New
Block Parameters for Specifying Minimum and Maximum Values” on page
233). Simulink software alerts you when values of block parameters lie
outside a range that corresponds to its specified minimum and maximum
values and data type. See “Checking Parameter Values” in Simulink User’s
Guide for more information.

New Diagnostic for Checking Signal Ranges During Simulation
In the Configuration Parameters dialog, the Diagnostics > Data Validity
pane contains a new diagnostic, Simulation range checking, which alerts
you during simulation when blocks output signals that exceed specified
minimum or maximum values (see “New Block Parameters for Specifying
Minimum and Maximum Values” on page 233). For more information about
using this diagnostic, see “Signal Ranges” in Simulink User’s Guide.

Configuration Management

Disabled Library Link Management
The following new features help manage disabled library links and protect
against accidental loss of work:

• “Disabled Link” appears in the title bar of a Model Editor window that
displays a subsystem connected to a library by a disabled link.

• ToolTips for library-linked blocks include the link status as well as the
destination block for the link.

235

Simulink® Release Notes

• New diagnostics warn when saving a model that contains disabled or
parameterized library links.

• New Model Advisor checks let you search for disabled or parameterized
library links in a model.

See “Disabling Links to Library Blocks” in Simulink User’s Guide for more
information.

Model Dependencies Tools
The model dependencies manifest tools have these new capabilities:

• Enhanced analysis to detect file dependencies from Stateflow transitions,
Embedded MATLAB functions, and requirements documents. See “Scope
of Dependency Analysis” in Simulink User’s Guide.

• Model dependencies tools now save user manifest edits for reuse the next
time a manifest is generated. See “Editing Manifests” in Simulink User’s
Guide.

Embedded Software Design

Legacy Code Tool Enhancement
The Legacy Code Tool has been enhanced to allow the use of void* and
void** to declare variables that represent memory allocated for specific
instances of items such as file descriptors, device drivers, and memory
managed externally.

For more information, see:

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Developing S-Functions

• legacy_code function documentation in the Simulink Reference

Block Enhancements

Product Block Reorders Inputs Internally
In previous releases, a Product block whose

236

Version 7.0 (R2007b) Simulink® Software

• Number of inputs parameter begins with a divide character (/)

• Multiplication parameter specifies Element-wise(.*)

computes the reciprocal of its first input before multiplying or dividing by
subsequent inputs. For example, if a Product block specifies division for its
first input, u1, and multiplication for its second input, u2, previous versions of
Simulink software compute

(1 / u1) * u2

In this release, the Product block internally reorders its first two inputs if
particular conditions apply, such that Simulink software now computes

u2 / u1

See the Product block documentation in the Simulink Reference for more
information.

Block Data Tips Now Work on All Platforms
In previous releases, block data tips worked only on Microsoft Windows
platforms. In this release, the data tips work on all platforms. Also, the data
tip for a library link, even if disabled, now includes the name of the library
block it references.

Enhanced Data Type Support for Blocks
The following blocks now allow you to specify the data type of their outputs:

• Abs

• Multiport Switch

• Saturation

• Saturation Dynamic

• Switch

The following blocks now support single-precision floating-point inputs,
outputs, and parameter values:

• Discrete Filter

237

Simulink® Release Notes

• Discrete State-Space

• Discrete Transfer Fcn

New Simulink Data Class Block Object Properties
The following properties have been added to the Simulink.BlockData class:

• AliasedThroughDataType

• AliasedThroughDataTypeID

New Break Link Options for save_system Command
The save_system command’s BreakLink option has been replaced by two
options: BreakAllLinks and BreakUserLinks. The first option duplicates the
behavior of the obsolete BreakLink option, i.e., it replaces all library links,
including links to Simulink block libraries with copies of the referenced
library blocks. The BreakUserLinks option replaces only links to user-defined
libraries.

Compatibility Considerations. The save_system command continues to
honor the BreakLink option but displays a warning message at the MATLAB
command line that the option is deprecated.

Simulink Software Checks Data Type of the Initial Condition
Signal of the Integrator Block
When the output port of the Constant or IC block is connected to the Initial
Condition port of the Integrator block, Simulink software now compares the
data type of the Initial Condition input signal of the Integrator block with
the Constant value parameter or Initial value parameter of the Constant
block or IC block, respectively.

Compatibility Considerations. If the data type for the output port of the
Constant or IC blocks does not match the data type of the Initial Condition
input signal for the Integrator block, Simulink software returns an error
at compile time.

238

Version 7.0 (R2007b) Simulink® Software

Usability Enhancements

Model Advisor
Model Advisor has been enhanced to navigate checks, display status, and
report results. Also, this release contains a new “Model Advisor Checks”
reference.

Alignment Commands
This release contains new block alignment, distribution, and resize commands
to align groups of blocks along their edges, equalize interblock spacing,
and resize blocks to be all the same size. See “Aligning, Distributing, and
Resizing Groups of Blocks Automatically” in Simulink User’s Guide for more
information.

S-Functions

New S-Function APIs to Support Singleton Dimension Handling
The following functions have been added:

• ssPruneNDMatrixSingletonDims

• ssGetInputPortDimensionSize

• ssGetOutputPortDimensionSize

See “S-Function SimStruct Functions — Alphabetical List” in Developing
S-Functions for more information.

New Level-2 M-File S-Function Example
This release includes a new Level-2 M-file S-function example in
sfundemos.mdl. The Simulink model msfcndemo_varpulse.mdl uses the
S-function msfcn_varpulse.m to create a variable-width pulse generator.

239

Simulink® Release Notes

Version 6.6.1 (R2007a+) Simulink Software
This table summarizes what’s new in V6.6.1 (R2007a+):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

No No Bug Reports
Includes fixes

240

http://www.mathworks.com/support/bugreports/?product=SL&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007a+

Version 6.6 (R2007a) Simulink® Software

Version 6.6 (R2007a) Simulink Software
This table summarizes what’s new in Version 6.6 (R2007a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes
Summary

Bug Reports
Includes fixes

New features and changes introduced in this version are

• “Multidimensional Signals” on page 242

• “New Block Parameters” on page 246

• “GNU Compiler Upgrade” on page 246

• “Changes to Concatenate Block” on page 246

• “Changes to Assignment Block” on page 247

• “Changes to Selector Block” on page 248

• “Improved Model Advisor Navigation and Display” on page 249

• “Change to Simulink.ModelAdvisor.getModelAdvisor Method” on page 249

• “New Simulink Blocks” on page 250

• “Change to Level-2 MATLAB S-Function Block” on page 250

• “Model Dependency Analysis” on page 250

• “Model File Monitoring” on page 251

• “Legacy Code Tool Enhancements” on page 251

• “Continuous State Names” on page 252

• “Changes to Embedded MATLAB Function Block” on page 253

• “Referenced Models Support Non-Zero Start Time” on page 257

• “New Functions Copy a Model to a Subsystem or Subsystem to Model”
on page 257

• “New Functions Empty a Model or Subsystem” on page 258

241

http://www.mathworks.com/support/bugreports/?product=SL&release=R2007a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2007a

Simulink® Release Notes

• “Default for Signal Resolution Parameter Has Changed” on page 259

• “Referencing Configuration Sets” on page 260

• “New Block, Model Advisor Check, and Utility Function for Bus to Vector
Conversion” on page 260

• “Enhanced Support for Tunable Parameters in Expressions” on page 261

• “New Loss of Tunability Diagnostic” on page 262

• “Port Parameter Evaluation Has Changed” on page 262

• “Data Type Objects Can Be Passed Via Mask Parameters” on page 263

• “Expanded Options for Displaying Subsystem Port Labels” on page 263

• “Model Explorer Customization Option Displays Properties of Selected
Object” on page 264

• “Change to PaperPositionMode Parameter” on page 264

• “New Simulink.Bus.objectToCell Function” on page 264

• “Simulink.Bus.save Function Enhanced To Allow Suppression of Bus
Object Creation” on page 264

• “Change in Version 6.5 (R2006b) Introduced Incompatibility” on page 265

• “Nonverbose Output During Code Generation” on page 265

• “SimulationMode Removed From Configuration Set” on page 265

Multidimensional Signals
This release includes support for multidimensional signals, including:

• Sourcing of multidimensional signals

• Logging or displaying of multidimensional signals

• Large-scale modeling applications, such as those from model referencing

• Buses and nonvirtual buses

• Code generation with Real-Time Workshop software

• S-functions, including Level-2 M-File S-functions

• Stateflow charts

242

Version 6.6 (R2007a) Simulink® Software

For further details, see:

• “Multidimensional Signals in Simulink Blocks” on page 243

• “Multidimensional Signals in S-Functions” on page 245

Simulink software supports signals with up to 32 dimensions. Do not use
signals with more than 32 dimensions.

Multidimensional Signals in Simulink Blocks
The following blocks were updated to support multidimensional signals. See
“Signal Dimensions” in the Simulink documentation for further details.

• Abs

• Assignment

• Bitwise Operator

• Bus Assignment

• Bus Creator

• Bus Selector

• Compare to Constant

• Compare to Zero

• Complex to Magnitude-Angle

• Complex to Real-Imag

• Concatenate

• Constant

• Data Store Memory

• Data Store Read

• Data Store Write

• Data Type Conversion

• MATLAB Function (formally called Embedded MATLAB Function)

• Environment Controller

243

Simulink® Release Notes

• From

• From Workspace

• Gain (only if theMultiplication parameter specifies Element-wise(K*u))

• Goto

• Ground

• IC

• Inport

• Level-2 MATLAB S-Function

• Logical Operator

• Magnitude-Angle to Complex

• Manual Switch

• Math Function (no multidimensional signal support for the transpose
and hermitian functions)

• Memory

• Merge

• MinMax

• Model

• Multiport Switch

• Outport

• Product, Product of Elements — only if the Multiplication parameter
specifies Element-wise

• Probe

• Random Number

• Rate Transition

• Real-Imag to Complex

• Relational Operator

• Reshape

244

Version 6.6 (R2007a) Simulink® Software

• Scope, Floating Scope

• Selector

• S-Function

• Signal Conversion

• Signal Specification

• Slider Gain

• Squeeze

• Subsystem, Atomic Subsystem, CodeReuse Subsystem

• Add, Subtract, Sum, Sum of Elements — along specified dimension

• Switch

• Terminator

• To Workspace

• Trigonometric Function

• Unary Minus

• Uniform Random Number

• Unit Delay

• Width

The Block Support Table does not list which blocks support multidimensional
signals. To see if a block supports multidimensional signals, check for the
entry Multidimensionalized in the Characteristics table of a block.

Multidimensional Signals in S-Functions
To use multidimensional signals in S-functions, you must use the new
SimStruct function, ssAllowSignalsWithMoreThan2D.

Multidimensional Signals in Level-2 M-File S-Functions
To use multidimensional signals in Level-2 M-file S-functions, you must set the
new Simulink.MSFcnRunTimeBlock property, AllowSignalsWithMoreThan2D.

245

Simulink® Release Notes

New Block Parameters
This release introduces the following common block parameters.

• PreCopyFcn: Allows you to assign a function to call before the block is
copied. See “Block Callback Parameters” in the Simulink documentation
for details.

• PreDeleteFcn: Allows you to assign a function to call before the block is
deleted. See “Block Callback Parameters” in the Simulink documentation
for details.

• StaticLinkStatus: Allows you to obtain the link status of a block without
updating out-of-date reference blocks See “Checking and Setting Link
Status Programmatically” in the Simulink documentation for details.

GNU Compiler Upgrade
This release upgrades the GNU® compiler to GCC 4.0.3 on Mac® platforms
and GCC 4.1.1 on Linux platforms. The Fortran runtime libraries for the
previous GCC 3.x versions are no longer included with MATLAB.

Compatibility Considerations
C, C++, or Fortran MEX-files built with the previous 3.x version of the GCC
compiler are not guaranteed to load in this release. Rebuild the source code
for these S-functions using the new version of the GCC compiler.

Changes to Concatenate Block
This release includes the following changes to the Concatenate block:

• Its Mode parameter provides two settings, namely, Vector and
Multidimensional array.

• Its parameter dialog box contains a new option, Concatenate dimension,
specifying the output dimension along which to concatenate the input
arrays.

• The block displays a new icon when its Mode parameter is set to
Multidimensional array.

246

Version 6.6 (R2007a) Simulink® Software

This release updates Concatenate blocks when loading models created in
previous releases.

Changes to Assignment Block
This release includes the following changes to the Assignment block:

• Enter the number of dimensions in the Number of output dimensions
parameter, then configure the input and output with the Index Option,
Index, and Output Size parameters.

• The parameter dialog box has the following new parameters:

- Number of output dimensions

- Index Option

- Index

- Output Size

• The Initialize output (Y) parameter replaces Output (Y) and has
renamed options.

• The Action if any output element is not assigned parameter replaces
Diagnostic if not all required dimensions populated.

• The block displays a new icon depending on the value of Number of input
dimensions and the Index Option settings.

The following parameters are obsolete:

• Input type

• Use index as start value

• Source of element indices

• Elements

• Source of row indices

• Rows

• Source of column indices

• Columns

247

Simulink® Release Notes

• Output dimensions

This release updates Assignment blocks when loading models created in
previous releases.

Changes to Selector Block
This release includes the following changes to the Selector block:

• Enter the number of dimensions in the Number of input dimensions
parameter, then configure the input and output with the Index Option,
Index, and Output Size parameters.

• The parameter dialog box has the following new parameters:

- Number of input dimensions

- Index Option

- Index

- Output Size

• The behavior of the Sample time parameter has changed. See the Selector
block Sample time parameter for details.

• The block displays a new icon depending on the value of Number of input
dimensions and the Index Option settings.

The following parameters are obsolete:

• Input type

• Use index as starting value

• Source of row indices

• Rows

• Source of column indices

• Columns

• Output port dimensions

248

Version 6.6 (R2007a) Simulink® Software

This release updates Selector blocks when loading models created in previous
releases.

Improved Model Advisor Navigation and Display
This release improves the Model Advisor graphical user interface (GUI)
for navigating lists of checks and viewing the status of completed checks.
While Model Advisor functionality and content are largely unchanged from
R2006b, the Model Advisor checks display and are navigated differently than
in previous versions, and the generated Model Advisor report, if requested,
displays in a MATLAB web browser window that is separate from the Model
Advisor GUI.

To exercise the new features, open Model Advisor for a model (for example,
enter modeladvisor('vdp') at the MATLAB command line) and then follow
the instructions in the Model Advisor window. For more information about
Model Advisor navigation and display, see “Consulting the Model Advisor” in
the Simulink documentation.

Change to Simulink.ModelAdvisor.getModelAdvisor
Method
In this release, when using the getModelAdvisor method defined by the
Simulink.ModelAdvisor class to change Model Advisor working scope to
a different model, you must either close the previous model or invoke the
getModelAdvisor method with 'new' as the second argument. For example,
if you previously set scope to modelX with

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');

and you want to change scope to modelY, you must either close modelX or use

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY', 'new');

If you try to change scope between models without the 'new' argument, an
error message is displayed.

Compatibility Considerations
In previous releases, you could change Model Advisor working scope without
closing the current session. This is no longer allowed.

249

Simulink® Release Notes

If your code contains a code pattern such as the following,

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');
...
Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY');

you must add the 'new' argument to the second and subsequent invocations
of getModeladvisor. For example:

Obj = Simulink.ModelAdvisor.getModelAdvisor('modelX');
...
Obj = Simulink.ModelAdvisor.getModelAdvisor('modelY', 'new');

Alternatively, you can close ModelX before issuing
Simulink.ModelAdvisor.getModelAdvisor('modelY').

New Simulink Blocks
This release introduces the following blocks:

• The Permute Dimensions block enables you to rearrange the dimensions of
a multidimensional signal.

• The Squeeze block enables you to remove singleton dimensions from a
multidimensional signal.

Change to Level-2 MATLAB S-Function Block
If a model includes a Level-2 MATLAB S-Function block, and an error occurs
in the S-function, the Level-2 M-File S-Function block will display M-file
stack trace information for the error in a dialog box. Click OK to remove the
dialog box. In previous releases, this block did not display the stack trace
information.

Model Dependency Analysis
The model dependencies manifest tools identify files required by your model.
You can list required files in a ’manifest’ file, package the model with required
files into a ZIP file, or compare two file manifests.

See “Model Dependencies” for more information.

250

Version 6.6 (R2007a) Simulink® Software

Model File Monitoring
• Warnings if a model file is changed on disk by another user or application
while the model is loaded in Simulink software. (see Model File Change
Notification in “Managing Model Versions”).

• Warning to notify the user if multiple models or libraries with the same
name exist, as Simulink software may not be using the one the user
expects. (see “Shadowed Files”).

Legacy Code Tool Enhancements

• New fields in the Legacy Code Tool data structure:
InitializeConditionsFcnSpec and SampleTime.
InitializeConditionsFcnSpec defines a function specification for a
reentrant function that the S-function calls to initialize and reset states.
SampleTime allows you to specify whether sample time is inherited from
the source block, represented as a tunable parameter, or fixed.

• Support for state (persistent memory) arguments in registered function
specifications.

• Support for complex numbers specified for input, output, and parameter
arguments in function specifications. This support is limited to use with
Simulink built-in data types.

• Support for multidimensional arrays specified for input and output
arguments in function specifications. Previously, multidimensional array
support applied to parameters only.

• Ability to apply the size function to any dimension of function input
data—input, output, parameter, or state. The data type of the size
function’s return value can be any type except complex, bus, or fixed-point.

• A new Legacy Code Tool option, 'backward_compatibility', which you
can specify with the legacy_code function. This option enables Legacy
Code Tool syntax, as made available from MATLAB Central in releases
prior to R2006b, for a given MATLAB session.

• The following new demos:

sldemo_lct_sampletime
sldemo_lct_work
sldemo_lct_cplxgain

251

Simulink® Release Notes

sldemo_lct_ndarray

For more information, see

• “Integrating Existing C Functions into Simulink Models with the Legacy
Code Tool” in the Writing S-Functions documentation

• “Legacy Code Tool Code Insertion” in the Real-Time Workshop
documentation

• legacy_code function reference page

Compatibility Considerations
If you are using a version of the Legacy Code Tool that was accessible from
MATLAB Central before R2006b, the syntax for using the tool differs from the
syntax currently supported by Simulink software. To continue using the old
style syntax, for example, legacy_code_initialize.m, issue the following
call to legacy_code for a given MATLAB session:

legacy_code('backward_compatibility');

Continuous State Names
State names can now be assigned in those blocks that employ continuous
states. The names are assigned with the ContinuousStateAttributes
“Block-Specific Parameters” parameter, or in the Blocks Parameter dialog box.

The following blocks support continuous state names:

• Integrator

• State-Space

• Transfer Fcn

• Variable Transport Delay

• Zero-Pole

Logging of continuous states is illustrated in the sldemo_hydrod demo.

252

Version 6.6 (R2007a) Simulink® Software

Changes to Embedded MATLAB Function Block
This release introduces the following changes to the Embedded MATLAB
Function block:

• “New Function Checks M-Code for Compliance with Embedded MATLAB
Subset” on page 253

• “Support for Multidimensional Arrays” on page 253

• “Support for Function Handles” on page 254

• “Enhanced Support for Frames” on page 254

• “New Embedded MATLAB Runtime Library Functions” on page 254

• “Using & and | Operators in Embedded MATLAB Function Blocks” on
page 256

• “Calling get Function from Embedded MATLAB Function Blocks” on page
257

• “Documentation on Embedded MATLAB Subset has Moved” on page 257

New Function Checks M-Code for Compliance with Embedded
MATLAB Subset
Embedded MATLAB function blocks introduce a new function, Embedded
MATLAB MEX (emlmex), that checks M-code for compliance with the syntax
and semantics of the Embedded MATLAB subset. You can add Embedded
MATLAB-compliant code to Embedded MATLAB Function blocks and Truth
Table blocks in Simulink models. For more information, see “Working with
Embedded MATLAB MEX” in the Embedded MATLAB documentation.

Support for Multidimensional Arrays
Embedded MATLAB Function blocks now support multidimensional signals
and parameter data, where the number of dimensions can be greater than 2.
This feature is fully integrated with support for multidimensional signals in
Simulink software. Supported functions in the Embedded MATLAB Run-Time
Function Library have been enhanced to handle multidimensional data.

253

Simulink® Release Notes

Support for Function Handles
Embedded MATLAB Function blocks now support function handles for
invoking functions indirectly and parameterizing operations that you repeat
frequently in your code. For more information, see the section on using
function handles in “About Code Generation from MATLAB Algorithms” in
the Embedded MATLAB documentation.

Enhanced Support for Frames
Embedded MATLAB Function blocks can now input and output frame-based
signals directly in Simulink models. You no longer need to attach Frame
Conversion blocks to inputs and outputs to achieve this functionality. See
“Working with Frame-Based Signals” in the Simulink documentation.

New Embedded MATLAB Runtime Library Functions
Embedded MATLAB Function blocks provide 31 new runtime library
functions in the following categories:

• “Casting Functions” on page 255

• “Derivative and Integral Functions” on page 255

• “Discrete Math Functions” on page 255

• “Exponential Functions” on page 255

• “Filtering and Convolution Functions” on page 255

• “Logical Operator Functions” on page 255

• “Matrix and Array Functions” on page 255

• “Polynomial Functions” on page 256

• “Set Functions” on page 256

• “Specialized Math” on page 256

• “Statistical Functions” on page 256

See the Embedded MATLAB Run-Time Function Library for a list of all
supported functions.

254

Version 6.6 (R2007a) Simulink® Software

Casting Functions.

• typecast

Derivative and Integral Functions.

• cumtrapz

• trapz

Discrete Math Functions.

• nchoosek

Exponential Functions.

• expm

Filtering and Convolution Functions.

• conv2

• deconv

• detrend

• filter2

Logical Operator Functions.

• xor

Matrix and Array Functions.

• cat

• flipdim

• normest

• rcond

• sortrows

255

Simulink® Release Notes

Polynomial Functions.

• poly

Set Functions.

• issorted

Specialized Math.

• beta

• betainc

• betaln

• ellipke

• erf

• erfc

• erfcinv

• erfcx

• erfinv

• expint

• gamma

• gammainc

• gammaln

Statistical Functions.

• mode

Using & and | Operators in Embedded MATLAB Function Blocks
Embedded MATLAB Function blocks no longer support & and | operators in
if and while conditional statements.

256

Version 6.6 (R2007a) Simulink® Software

Compatibility Considerations. In prior releases, these operators compiled
without error, but their short-circuiting behavior was not implemented
correctly. Substitute && and || operators instead.

Calling get Function from Embedded MATLAB Function Blocks
Embedded MATLAB Function blocks now support the Fixed-Point Toolbox™
get function for returning the properties of fi objects.

Compatibility Considerations. To get properties of non-fixed-point objects
in Embedded MATLAB Function blocks, you must first declare get to be an
extrinsic function; otherwise, your code will error. For more information refer
to “Calling MATLAB Functions” in the Embedded MATLAB documentation.

Documentation on Embedded MATLAB Subset has Moved
Documentation on the Embedded MATLAB subset and its syntax, semantics,
and supported functions has moved out of the Simulink Reference. See Code
Generation from MATLAB User’s Guide for the new Embedded MATLAB
documentation.

Referenced Models Support Non-Zero Start Time
The simulation start time of all models in a model reference hierarchy was
previously required to be 0. Now the simulation start time can be nonzero.
The start time of all models in a model reference hierarchy must be the same.
See “Referencing a Model” and “Specifying a Simulation Start and Stop Time”
for information about these capabilities. See “Referencing Configuration Sets”
on page 260 for information about a convenient way to give all models in a
hierarchy the same configuration parameters, including simulation start time.

New Functions Copy a Model to a Subsystem or
Subsystem to Model
Two new functions exist that you can use to copy contents between a block
diagram and a subsystem.

Simulink.BlockDiagram.copyContentsToSubSystem
Copies the contents of a block diagram to an empty subsystem.

257

Simulink® Release Notes

Simulink.SubSystem.copyContentsToBlockDiagram
Copies the contents of a subsystem to an empty block diagram.

For details, see the reference documentation for each function.

New Functions Empty a Model or Subsystem
Two new functions exist that you can use to delete the contents of a block
diagram or subsystem.

Simulink.BlockDiagram.deleteContents
Deletes the contents of a block diagram.

Simulink.SubSystem.deleteContents
Deletes the contents of a subsystem.

For details, see the reference documentation for each function.

258

Version 6.6 (R2007a) Simulink® Software

Default for Signal Resolution Parameter Has Changed
In the Configuration Parameters dialog, Diagnostics > Data Validity pane,
the default setting for Signal resolution is now Explicit only. Previously,
the default was Explicit and warn implicit. Equivalently, the default value
of the SignalResolutionControl parameter is now UseLocalSettings
(previously TryResolveAllWithWarnings). See “Diagnostics Pane: Data
Validity” for more information.

Compatibility Considerations
Due to this change, labeling a signal is no longer enough to cause it to resolve
by default to a signal object. You must also do one of the following:

• In the signal’s Signal Properties dialog, select Signal name must resolve
to Simulink data object and specify a Simulink.Signal object in the
Signal name field. Simulink software then resolves that signal to that
signal object.

• In the Configuration Parameters dialog, set Diagnostics > Data Validity
> Signal resolution to Explicit and warn implicit (to post warnings)
or Explicit and implicit (to suppress warnings). Simulink software
then resolves all labeled signals to signal objects by matching their names,
posting a warning of each resolution if so directed.

Models built in R2007a will default to Explicit only. Models created in
previous versions will retain the Signal resolution value with which they
were saved, and will run as they did before. New models may therefore
behave differently from existing models that retain the previous default
behavior. To specify the previous default behavior in a new model, change
Signal resolution to Explicit and warn implicit.

Conversion Function. MathWorks discourages using implicit signal
resolution except for fast prototyping, because implicit resolution slows
performance, complicates model validation, and can have nondeterministic
effects. Simulink software provides the disableimplicitsignalresolution
function, which you can use to change settings throughout a model so
that it does not use implicit signal resolution. See the function’s reference
documentation, or type:

help disableimplicitsignalresolution

259

Simulink® Release Notes

in the MATLAB Command Window.

Referencing Configuration Sets
This release provides configuration references (Simulink.ConfigSetRef
class), which you can use to link multiple models to a configuration set stored
on the base workspace. All of those models then share the same configuration
set, and therefore have the same configuration parameter values. Changing a
parameter value in a shared configuration set changes that value for every
model that uses the set. With configuration references, you can:

• Assign the same configuration set to any number of models

• Replace the configuration sets of any number of models without changing
the model files

• Use different configuration sets for a referenced model in different contexts
without changing the model file

See “Manage a Configuration Set” and “Manage a Configuration Reference”
for more information.

Compatibility Considerations
You cannot change configuration parameter values by operating directly on
a configuration reference as you can a configuration set. Instead, you must
use the configuration reference to retrieve the configuration set and operate
on the set. If you reconfigure a model to access configuration parameters
using a configuration reference, you must update any scripts that change
parameter values to incorporate the extra step of obtaining the configuration
set from the reference before changing the values. See “Create a Freestanding
Configuration Set at the Command Line” for details.

New Block, Model Advisor Check, and Utility
Function for Bus to Vector Conversion
When the diagnostic Configuration Parameters > Connectivity > Buses
> Bus signal treated as vector is disabled or none, you can input a
homogeneous virtual bus to many blocks that accept vectors but are not
formally defined as accepting buses. Simulink software transparently
converts the bus to a vector, allowing the block to accept the bus.

260

Version 6.6 (R2007a) Simulink® Software

However, MathWorks discourages intermixing buses and vectors, because
such mixtures cause ambiguities that preclude strong type checking. The
practice may become unsupported at some future time, and should not be
used in new applications.

Simulink software provides diagnostics that report cases where buses are
mixed with vectors, and includes capabilities that you can use to upgrade a
model to eliminate such mixtures, as described in the following sections of
the Simulink documentation:

• “Using Composite Signals” — A new chapter in R2007a that describes the
specification and use of composite signals.

• “Avoiding Mux/Bus Mixtures” — Ambiguities that arise when composite
signal types are intermixed, and the tools available for eliminating such
mixtures.

• “Using Diagnostics for Mux/Bus Mixtures” — Two diagnostic options for
detecting mixed composite signals: “Mux blocks used to create bus signals”
and “Bus signal treated as vector”.

• “Using the Model Advisor for Mux/Bus Mixtures” — Model Advisor checks
that detect mixed composite signals and recommend alternatives.

• Bus to Vector — A block that you can insert into a bus used implicitly as a
vector to explicitly convert the bus to a vector.

• Simulink.BlockDiagram.addBusToVector — A function that creates a
report of every bus used implicitly as a vector, and optionally inserts a
Bus to Vector block into every such bus, replacing the implicit use with
an explicit conversion.

Enhanced Support for Tunable Parameters in
Expressions
Expressions that index into tunable parameters, such as P(1)+P(2)/P(i),
retain their tunability in generated code, including simulation code that is
generated for a referenced model. Both the indexed parameter and the index
itself can be tuned.

Parameter expressions of the form P(i) retain their tunability if all of the
following are true:

261

Simulink® Release Notes

• The index i is a constant or variable of double datatype

• P is a 1D array, or a 2D array with one row or one column, of double
datatype

• P does not resolve to a mask parameter, but to a variable in the model or
the base workspace

New Loss of Tunability Diagnostic
Previously, any loss of tunability generated a warning. In R2007a, you can
use the Loss of Tunability diagnostic to control whether loss of tunability is
ignored or generates a warning or error. See “Detect loss of tunability” for
details.

Port Parameter Evaluation Has Changed
Previously, resolution of port parameters of a masked subsystem began within
the subsystem, which could violate the integrity of the mask. For example, if
a subsystem mask defines parameter A, and a port of the subsystem uses A
to set some port attribute, resolving A by starting within the masked block
makes A externally visible, though it should be visible only within the mask.

To fix this problem, in R2007a masked subsystem port parameter resolution
starts in the containing system rather than within the masked subsystem,
then proceeds hierarchically upward as it did before. This change preserves
the integrity of the masked subsystem, but can change model behavior if
any subsystem port previously depended for resolution on a variable defined
within the mask.

Compatibility Considerations
A model whose ports did not reference variables defined within a mask are
unaffected. A model that resolved any port parameter by accessing a variable
within a masked block may behave differently or become vulnerable to future
changes in behavior, as follows:

• If the port parameter’s value cannot be evaluated, because the evaluation
would require access to a variable defined only within the mask, an error
occurs.

262

Version 6.6 (R2007a) Simulink® Software

• If an appropriate variable exists outside the mask but has a different value
than the corresponding variable within the mask, no error occurs, but
model behavior may change.

• If an appropriate variable exists and has the same value inside and outside
the mask, no behavioral change occurs, but later changes to the variable
outside the mask may have unexpected effects.

To ensure correct results, change the model as needed so that any port
parameter that previously depended on any variables defined within a mask
give the intended results using the new resolution search path.

Data Type Objects Can Be Passed Via Mask
Parameters
Previously, if a masked subsystem contained a block that needed to specify a
data type using a data type object, the block could access the object only in the
base workspace. The data type object could not be passed into the subsystem
through a mask parameter. Parameterizing data types used by blocks under
a mask was therefore not possible.

To support parameterized data types inside masked subsystems, you can now
use a mask parameter to pass a data type object into a subsystem. Blocks in
the subsystem can then use the object to specify data types under the mask.

Expanded Options for Displaying Subsystem Port
Labels
This release provides an expanded set of options for displaying port labels on
a subsystem block. The options include displaying:

• The label on the corresponding port block

• The name of the corresponding port block

• The name of the signal connected to the corresponding block

See the documentation for the Show Port Labels option on the Subsystem
block’s parameter dialog box for more information.

263

Simulink® Release Notes

Model Explorer Customization Option Displays
Properties of Selected Object
This release introduces a Selection Properties node to the Model Explorer’s
Customize Contents pane. The node allows you to customize the Model
Explorer’s Contents pane to display only the properties of the currently
selected object. See “The Model Explorer: Overview” for more information.

Change to PaperPositionMode Parameter
In this release, when exporting a diagram as a graphic with the
PaperPositionMode model parameter set to auto, Simulink software sizes the
exported graphic to be the same size as the diagram’s image on the screen
when viewed at normal size. When PaperPositionMode is set to manual,
Simulink software sizes the exported image to have the height and width
specified by the model’s PaperPosition parameter.

Compatibility Considerations
In previous releases, a model’s PaperPosition parameter determined
the size of the exported graphic regardless of the setting of the model’s
PaperPositionMode parameter. To reproduce the behavior of previous
releases, set the PaperPositionMode parameter to manual.

New Simulink.Bus.objectToCell Function
A new function, Simulink.Bus.objectToCell, is available for converting bus
objects to a cell array that contains bus information. For details, see the
description of Simulink.Bus.objectToCell.

Simulink.Bus.save Function Enhanced To Allow
Suppression of Bus Object Creation
The Simulink.Bus.save function has been enhanced such that when using
the 'cell' format you have the option of suppressing the creation of bus
objects when the saved M-file executes. To suppress bus object creation,
specify the optional argument 'false' when you execute the saved M-file.

For more detail, see the description of Simulink.Bus.save.

264

Version 6.6 (R2007a) Simulink® Software

Change in Version 6.5 (R2006b) Introduced
Incompatibility
A change introduced in Version 6.5 (R2006b) introduces an incompatibility
between this release and releases preceding Version 6.5 (R2006b). See
“Attempting to Reference a Symbol in an Uninitialized Mask Workspace
Generates an Error” on page 272 for more information.

Nonverbose Output During Code Generation
Simulink Accelerator now defaults to nonverbose output when generating
code. A new parameter, AccelVerboseBuild, has been added to control how
much information is displayed. See “Customizing the Build Process” for more
information.

SimulationMode Removed From Configuration Set
Previously, the SimulationMode property was attached to the configuration
set for a model. In R2007a, the property has been removed from the
configuration set. Now you set the simulation mode for the model using the
Simulation menu in the model window or the set_param function with the
SimulationMode model parameter.

Compatibility Considerations
Using Simulink.ConfigSet.SimulationMode is not recommended. Use
set_param(modelName,'SimulationMode',value) instead.

265

Simulink® Release Notes

Version 6.5 (R2006b) Simulink Software
This table summarizes what’s new in Version 6.5 (R2006b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes
Summary

Bug Reports
Includes fixes

New features and changes introduced in this version are

• “Model Dependency Viewer” on page 267

• “Enhanced Lookup Table Blocks” on page 267

• “Legacy Code Tool” on page 267

• “Simulink Software Now Uses Internal MATLAB Functions for Math
Operations” on page 268

• “Enhanced Integer Support in Math Function Block” on page 268

• “Configuration Set Updates” on page 269

• “Command to Initiate Data Logging During Simulation” on page 269

• “Commands for Obtaining Model and Subsystem Checksums” on page 270

• “Sample Hit Time Adjusting Diagnostic” on page 270

• “Function-Call Models Can Now Run Without Being Referenced” on page
270

• “Signal Builder Supports Printing of Signal Groups” on page 270

• “Method for Comparing Simulink Data Objects” on page 271

• “Unified Font Preferences Dialog Box” on page 271

• “Limitation on Number of Referenced Models Eliminated for Single
References” on page 271

• “Parameter Objects Can Now Be Used to Specify Model Configuration
Parameters” on page 271

266

http://www.mathworks.com/support/bugreports/?product=SL&release=R2006b
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006b

Version 6.5 (R2006b) Simulink® Software

• “Parameter Pooling Is Now Always Enabled” on page 272

• “Attempting to Reference a Symbol in an Uninitialized Mask Workspace
Generates an Error” on page 272

• “Changes to Integrator Block’s Level Reset Options” on page 273

• “Embedded MATLAB Function Block Features and Changes” on page 273

Model Dependency Viewer
The Model Dependency Viewer displays a dependency view of a model
that shows models and block libraries directly or indirectly referenced by
the model. The dependency view allows you to quickly determine your
model’s dependencies on referenced models and block libraries. See “Model
Dependencies” for more information.

Enhanced Lookup Table Blocks
This release replaces the PreLookup Index Search and Interpolation (n-D)
Using PreLookup blocks with two new blocks: Prelookup and Interpolation
Using Prelookup. The new blocks provide fixed-point arithmetic, consistency
checking, more efficient code generation, and other enhancements over the
blocks they replace.

Compatibility Considerations
MathWorks plans on obsoleting the PreLookup Index Search and
Interpolation (n-D) Using PreLookup blocks in a future release. In the
meantime, MathWorks will continue to support and enhance these blocks.
For example, this release improves the precision with which the PreLookup
Index Search block computes its fraction value if its Index search method
parameter specifies Evenly Spaced Points.

We recommend that you use the Prelookup and Interpolation Using Prelookup
blocks for all new model development.

Legacy Code Tool
The Legacy Code Tool generates an S-function from existing C code and
specifications that you supply. It enables you to transform your C functions
into C MEX S-functions for inclusion in a Simulink model. See “Integrating

267

Simulink® Release Notes

Existing C Functions into Simulink Models with the Legacy Code Tool” in
Developing S-Functions for more information.

Simulink Software Now Uses Internal MATLAB
Functions for Math Operations
In previous releases, Simulink software used the host compiler’s C++ Math
Library functions to perform most mathematical operations on floating-point
data. Some of those functions produced results that were slightly inconsistent
with MATLAB results. In this release, Simulink software calls the same
internal routines that MATLAB calls for most trigonometric, exponential,
and rounding and remainder operations involving floating-point data. This
ensures that when Simulink and MATLAB products operate on the same
platform, they produce the same numerical results.

In particular, Simulink software now performs mathematical operations with
the same internal functions that MATLAB uses to implement the following
M-functions:

• sin, cos, tan

• asin, acos, atan, atan2

• sinh, cosh, tanh

• asinh, acosh, atanh

• log, log2, log10

• mod, rem

• power

Note By default, in this release Real-Time Workshop software continues to
use C Math Library functions in the code that it generates from a Simulink
model.

Enhanced Integer Support in Math Function Block
The sqrt operation in the Math Function block now supports built-in integer
data types.

268

Version 6.5 (R2006b) Simulink® Software

Configuration Set Updates
This release includes the following changes to model configuration parameters
and configuration sets.

• This release includes a new command, openDialog, that displays the
Configuration Parameters dialog box for a specified configuration set.
This command allows display of configuration sets that are not attached to
any model.

• The attachConfigSet command now includes an allowRename option that
determines how the command handles naming conflicts when attaching a
configuration set to a model.

• This release includes a new attachConfigSetCopy command that attaches
a copy of a specified configuration set to a model.

• The new Sample hit time adjusting diagnostic controls whether
Simulink software notifies you when the solver has to adjust a sample
time specified by your model to solve the model. The associated model
parameter is TimeAdjustmentMsg.

• The default value of the Multitask data store diagnostic has changed
from Warning to Error for new models. This change does not affect existing
models.

• The name of the Block reduction optimization parameter has changed
to Block reduction.

Command to Initiate Data Logging During Simulation
The command

set_param(bdroot, 'SimulationCommand', 'WriteDataLogs')

writes all logging variables during simulation. See “Exporting Signal Data
Using Signal Logging” for more information.

269

Simulink® Release Notes

Commands for Obtaining Model and Subsystem
Checksums
This release includes commands for obtaining model and subsystem
checksums.

• Simulink.BlockDiagram.getChecksum

Get checksum for a model. Simulink Accelerator software uses this
checksum to control regeneration of simulation targets. You can use this
command to diagnose target rebuild problems.

• Simulink.SubSystem.getChecksum

Get checksum for a subsystem. Real-Time Workshop software uses this
checksum to control reuse of code generated from a subsystem that occurs
more than once in a model. You can use the checksum to diagnose code
reuse problems. See “Determining Why Subsystem Code Is Not Reused”.

Sample Hit Time Adjusting Diagnostic
The Sample hit time adjusting diagnostic controls whether Simulink
software notifies you when the solver has to adjust a sample time specified
by your model to solve the model. The associated model parameter is
TimeAdjustmentMsg.

Function-Call Models Can Now Run Without Being
Referenced
This release allows you to simulate a function-call model, i.e., a model that
contains a root-level function-call trigger block, without having to reference
the model. In previous releases, the function-call model had to be referenced
by another model in order to be simulated.

Signal Builder Supports Printing of Signal Groups
This release adds printing options to the Signal Builder block’s editor. It
allows you to print waveforms displayed in the editor to a printer, file, the
clipboard, or a figure window. For details, see “Printing, Exporting, and
Copying Waveforms”.

270

Version 6.5 (R2006b) Simulink® Software

Method for Comparing Simulink Data Objects
This release introduces an isContentEqual method for Simulink data objects
that allows you to determine whether a Simulink data object has the same
property values as another Simulink data object. For more information, see
“Comparing Data Objects”.

Unified Font Preferences Dialog Box
In this release, the Simulink Preferences dialog box displays font settings
for blocks, lines, and annotations on a single pane instead of on separate
tabbed panes as in previous releases. This simplifies selection of font
preferences.

Limitation on Number of Referenced Models
Eliminated for Single References
In previous releases, all distinct models referenced in a model hierarchy
counted against the limitation imposed by Microsoft Windows on the number
of distinct referenced models that can occur in a hierarchy. In this release,
models configured to be instantiable only once do not account against this
limit. This means that a model hierarchy can reference any number of
distinct models on Windows platforms as long as they are referenced only
once and are configured to be instantiable only once (see “Model Referencing
Limitations” for more information).

Parameter Objects Can Now Be Used to Specify
Model Configuration Parameters
This release allows you to use Simulink.Parameter objects to specify model
configuration as well as block parameters. For example, you can specify
a model’s fixed step size as Ts and its stop time as 20*Ts where Ts is a
workspace variable that references a parameter object. When compiling a
model, Simulink software replaces a reference to a parameter object in a
model configuration parameter expression with the object’s value.

Compatibility Considerations
In previous releases, you could use expressions of the form p.Value(),
where p references a parameter object, in model configuration parameter

271

Simulink® Release Notes

expressions. Such expressions cause expression evaluation errors in this
release when you compile a model. You should replace such expressions with a
simple reference to the parameter object itself, i.e., replace p.Value() with p.

Parameter Pooling Is Now Always Enabled
In previous releases, the Parameter Pooling optimization was optional and
was enabled by default. Due to internal improvements, disabling Parameter
Pooling would no longer be useful in any context. The optimization is
therefore part of standard R2006b operation, and has been removed from
the user interface.

Compatibility Considerations
Upgrading a model to R2006b inherently provides the effect that enabling
Parameter Pooling did in previous releases. No compatibility considerations
result from this change. If the optimization was disabled in an existing model,
a warning is generated when the model is first upgraded to R2006b. This
warning requires no action and can be ignored.

Attempting to Reference a Symbol in an Uninitialized
Mask Workspace Generates an Error
In this release, attempting to reference an symbol in an uninitialized mask
workspace generates an error. This can happen, for example, if a masked
subsystem’s initialization code attempts to set a parameter of a block that
resides in a masked subsystem in the subsystem being initialized and one or
more of the block’s parameters reference variables defined by the mask of the
subsystem in which it resides (see “Initialization Command Limitations”
for more information).

Compatibility Considerations
In this release, updating or simulating models created in previous releases
may generate unresolvable symbol error messages. This can happen if
the model contains masked subsystems whose initialization code sets
parameters on blocks residing in lower-level masked subsystems residing
in the top-level masked subsystem. To eliminate these errors, change the
initialization code to avoid the use of set_param commands to set parameters
in lower-level masked subsystems. Instead, use mask variables in upper-level

272

Version 6.5 (R2006b) Simulink® Software

masked subsystems to specify the values of parameters of blocks residing
in lower-level masked subsystems. See “Defining Mask Parameters”for
information on using mask variables to specify block parameter values.

Changes to Integrator Block’s Level Reset Options
This release changes the behavior of the level reset option of the Integrator
block. In releases before Simulink 6.3, the level reset option resets the
integrator’s state if the reset signal is nonzero or changes from nonzero in the
previous time step to zero in the current time step. In Simulink 6.3, 6.4, and
6.4.1, the option resets the integrator only if the reset signal is nonzero. This
release restores the level reset behavior of releases that preceded Simulink
6.3. It also adds a level hold option that behaves like the level reset option
of Simulink 6.3, 6.4, and 6.4.1.

Compatibility Considerations
A model that uses the level reset option could produce results that differ in
this release from those produced in Simulink 6.3, 6.4, and 6.4.1. To reproduce
the results of previous releases, change the model to use the new level
hold option instead.

Embedded MATLAB Function Block Features and
Changes

Support for Structures
You can now define structures as inputs, outputs, local, and persistent
variables in Embedded MATLAB Function blocks. With support for
structures, Embedded MATLAB Function blocks give you the ability to
read and write Simulink bus signals at inputs and outputs of Embedded
MATLAB Function blocks. See “Using Structures” in the Embedded MATLAB
documentation.

Embedded MATLAB Editor Analyzes Code with M-Lint
The Embedded MATLAB Editor uses the MATLAB M-Lint Code Analyzer to
automatically check your Embedded MATLAB function code for errors and
recommend corrections. The editor displays an M-Lint bar that highlights
offending lines of code and displays Embedded MATLAB diagnostics as well

273

Simulink® Release Notes

as MATLAB messages. See “Using M-Lint with Embedded MATLAB” in the
Embedded MATLAB documentation.

New Embedded MATLAB Runtime Library Functions
Embedded MATLAB Function blocks provide 36 new runtime library
functions in the following categories:

• “Data Analysis” on page 274

• “Discrete Math” on page 274

• “Exponential” on page 275

• “Interpolation and Computational Geometry” on page 275

• “Linear Algebra” on page 275

• “Logical” on page 276

• “Specialized Plotting” on page 276

• “Transforms” on page 276

• “Trigonometric” on page 276

Data Analysis.

• cov

• ifftshift

• std

• var

Discrete Math.

• gcd

• lcm

274

Version 6.5 (R2006b) Simulink® Software

Exponential.

• expm1

• log10

• log1p

• log2

• nextpow2

• nthroot

• reallog

• realpow

• realsqrt

Interpolation and Computational Geometry.

• cart2pol

• cart2sph

• pol2cart

• sph2cart

Linear Algebra.

• cond

• det

• ipermute

• kron

• permute

• planerot

• rand

• randn

• rank

275

Simulink® Release Notes

• shiftdim

• squeeze

• subspace

• trace

Logical.

• isstruct

Specialized Plotting.

• histc

Transforms.

• bitrevorder

Trigonometric.

• hypot

New Requirement for Calling MATLAB Functions from
Embedded MATLAB Function Blocks
To call external MATLAB functions from Embedded MATLAB Function
blocks, you must first declare the functions to be extrinsic. (External
MATLAB functions are functions that have not been implemented in the
Embedded MATLAB runtime library.) MATLAB Function blocks do not
compile or generate code for extrinsic functions; instead, they send the
function to MATLAB for execution during simulation. There are two ways
to call MATLAB functions as extrinsic functions in Embedded MATLAB
Function blocks:

• Use the new construct eml.extrinsic to declare the function extrinsic

• Call the function using feval

For details, see “Calling MATLAB Functions” in the Embedded MATLAB
documentation.

276

Version 6.5 (R2006b) Simulink® Software

Compatibility Considerations. Currently, Embedded MATLAB Function
blocks use implicit rules to handle calls to external functions:

• For simulation, Embedded MATLAB Function blocks send the function
to MATLAB for execution

• For code generation, Embedded MATLAB Function blocks check whether
the function affects the output of the Embedded MATLAB function in
which it is called. If there is no effect on output, Embedded MATLAB
Function blocks proceed with code generation, but exclude the function call
from the generated code. Otherwise, Embedded MATLAB Function blocks
generate a compiler error.

In future releases, Embedded MATLAB Function blocks will apply these rules
only to external functions that you call as extrinsic functions. Otherwise, they
will compile external functions by default, potentially causing unpredictable
behavior or generating errors. For reliable simulation and code generation,
MathWorks recommends that you call external MATLAB functions as
extrinsic functions.

Type and Size Mismatch of Values Returned from MATLAB
Functions Generates Error
Embedded MATLAB Function blocks now generate an error if the type
and size of a value returned by a MATLAB function does not match the
predeclared type and size.

Compatibility Considerations. In previous releases, Embedded MATLAB
Function blocks attempted to silently convert values returned by MATLAB
functions to predeclared data type and sizes if a mismatch occurred. Now,
such mismatches always generate an error, as in this example:

x = int8(zeros(3,3)); % Predeclaration
x = eval('5'); % Calls MATLAB function eval

This code now generates an error because the Embedded MATLAB function
predeclares x as a 3–by-3 matrix, but MATLAB function returns x as a scalar
double. To avoid errors, reconcile predeclared data types and sizes with the
actual types and sizes returned by MATLAB function calls in your Embedded
MATLAB Function blocks.

277

Simulink® Release Notes

Embedded MATLAB Function Blocks Cannot Output Character
Data
Embedded MATLAB Function blocks now generate an error if any of its
outputs is character data.

Compatibility Considerations. In the previous release, Embedded
MATLAB Function blocks silently cast character array outputs to int8 scalar
arrays. This behavior does not match MATLAB, which represents characters
in 16–bit unicode.

278

Version 6.4.1 (R2006a+) Simulink® Software

Version 6.4.1 (R2006a+) Simulink Software
This table summarizes what’s new in V6.4.1 (R2006a+):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

No No Bug Reports
at Web site

279

http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a+
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a+

Simulink® Release Notes

Version 6.4 (R2006a) Simulink Software
This table summarizes what’s new in V6.4 (R2006a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations below.
See also Summary.

Bug Reports
at Web site

New features and changes introduced in this version are

• “Signal Object Initialization” on page 281

• “Icon Shape Property for Logical Operator Block” on page 281

• “Data Type Property of Parameter Objects Now Settable” on page 281

• “Range-Checking for Parameter and Signal Object Values” on page 281

• “Expanded Menu Customization” on page 282

• “Bringing the MATLAB Desktop Forward” on page 282

• “Converting Atomic Subsystems to Model References” on page 282

• “Concatenate Block” on page 282

• “Model Advisor Changes” on page 283

• “Built-in Block’s Initial Appearance Reflects Parameter Settings” on page
283

• “Double-Click Model Block to Open Referenced Model” on page 283

• “Signal Logs Reflect Bus Hierarchy” on page 284

• “Tiled Printing” on page 284

• “Solver Diagnostic Controls” on page 284

• “Diagnostic Added for Multitasking Conditionally Executed Subsystems”
on page 285

• “Embedded MATLAB Function Block Features and Changes” on page 285

280

http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a
http://www.mathworks.com/support/bugreports/?product=SL&release=R2006a

Version 6.4 (R2006a) Simulink® Software

Signal Object Initialization
This release introduces the use of signal objects to specify initial values
for signals and states. This allows you to initialize signals or states in the
model, not just those generated by blocks that have initial condition or value
parameters. For details, see “Using Signal Objects to Initialize Signals and
Discrete States” in the online Simulink documentation.

Icon Shape Property for Logical Operator Block
The Logical Operator block’s parameter dialog box contains a new property,
Icon shape, settings for which can be either rectangular or distinctive. If
you select rectangular (the default), the block appears as it does in previous
releases. If you select distinctive, the block appears as the IEEE® standard
graphic symbol for the selected logic operator.

Data Type Property of Parameter Objects Now
Settable
This release allows you to set the data type of a Simulink.Parameter object
via either its Value property or via its Data type property. In previous
releases, you could specify the data type of a parameter object only by setting
the object’s Value property to a typed value expression.

Range-Checking for Parameter and Signal Object
Values
This release introduces range checking for Simulink.Parameter and
Simulink.Signal objects. Simulink software checks whether a parameter’s
Value or a signal’s Initial value falls within the values you specify for the
object’s Minimum and Maximum properties. If not, Simulink software
generates a warning or error.

Compatibility Considerations
Previous releases ignored such violations since the Minimum and Maximum
properties were intended for use in documenting parameter and signal
objects. In this release, Simulink software displays a warning if you load
a parameter object or a signal object does not specify a valid range or its
value falls outside the specified range. If you get such a warning, change

281

Simulink® Release Notes

the parameter or signal object’s Value or Minimum or Maximum values so that
the Value falls within a valid range.

Expanded Menu Customization
The previous release of Simulink software allows you to customize the
Simulink editor’s Tools menu. This release goes a step further and allows
you to customize any Simulink (or Stateflow) editor menu (see “Customizing
the Simulink User Interface” in the online Simulink documentation).

Bringing the MATLAB Desktop Forward
The Model Editor’s View menu includes a new command, MATLAB
Desktop, that brings the MATLAB desktop to the front of the windows
displayed on your screen.

Converting Atomic Subsystems to Model References
This release adds a command, Convert to Model Block, to the context
(right-click) menu of an atomic subsystem. Selecting this command converts
an atomic subsystem to a model reference . See Atomic Subsystem and
“Converting a Subsystem to a Referenced Model” for more information.

The function sl_convert_to_model_reference, which provided some of the
same capabilities as Convert to Model Block, is obsolete and has been
removed from the documentation. The function continues to work, so no
incompatibility arises, but it posts a warning when called. The function will
be removed in a future release.

Concatenate Block
The new Concatenate block concatenates its input signals to create a single
output signal whose elements occupy contiguous locations in memory. The
block typically uses less memory than the Matrix Concatenation block that it
replaces, thereby reducing model memory requirements.

Compatibility Considerations
This release replaces obsolete Matrix Concatenation blocks with Concatenate
blocks when loading models created in previous releases.

282

Version 6.4 (R2006a) Simulink® Software

Model Advisor Changes

Model Advisor Tasks Introduced
This release introduces Model Advisor tasks for referencing models and
upgrading a model to the current version of Simulink software. See
“Consulting the Model Advisor” in the online Simulink documentation for
more information.

Model Advisor API
This release introduces an application program interface (API) that enables
you to run the Model Advisor from the MATLAB command line or from M-file
programs. For example, you can use the API to create M-file programs that
determine whether a model passes selected Model Advisor checks whenever
you open, simulate, or generate code from the model. See “Running the Model
Advisor Programmatically” in the online Simulink documentation for more
information.

Built-in Block’s Initial Appearance Reflects Parameter
Settings
In this release, when you load a model containing nonmasked, built-in blocks
whose appearance depends on their parameter settings, such as the Selector
block, the appearance of the blocks reflect their parameter settings. You no
longer have to update the model to update the appearance of such blocks.

Compatibility Considerations
In previous releases, model or block callback functions that use set_param to
set a built-in, nonmasked block’s parameters could silently put the block in an
unusable state. In this release, such callbacks will trigger error messages if
they put blocks in an unusable state.

Double-Click Model Block to Open Referenced Model
In this release, double-clicking a Model block that specifies a valid referenced
model opens the referenced model, rather than the Block Parameters dialog
box as in previous releases. To open the Block Parameters dialog box, choose

283

Simulink® Release Notes

Model Reference Parameters from the Context or Edit menu. See
“Navigating a Model Block” for details.

Signal Logs Reflect Bus Hierarchy
In this release, signal logs containing buses reflect the structure of the
buses themselves instead of flattening bus data as in previous releases (see
Simulink.TsArray).

Tiled Printing
This release introduces a tiled printing option that allows you to distribute
a block diagram over multiple pages. You can control the number of pages
over which Simulink software distributes the block diagram, and hence, the
total size of the printed image. See “Tiled Printing” in the online Simulink
documentation for more information.

Solver Diagnostic Controls
In this release, the Configuration Parameters dialog box includes the
following enhancements:

• The Diagnostics pane contains a new diagnostic, Consecutive zero
crossings violation, that alerts you if Simulink software detects the
maximum number of consecutive zero crossings allowed. You can specify
the criteria that Simulink software uses to trigger this diagnostic using two
new Solver diagnostic controls on the Solver pane:

- Consecutive zero crossings relative tolerance

- Number of consecutive zero crossings allowed

For more information, see “Preventing Excessive Zero Crossings” in the
online Simulink documentation.

• The Solver pane contains a new solver diagnostic control, Number of
consecutive min step size violations allowed, that Simulink software
uses to trigger the Min step size violation diagnostic (see “Number of
consecutive min steps” in the online Simulink documentation).

284

Version 6.4 (R2006a) Simulink® Software

Diagnostic Added for Multitasking Conditionally
Executed Subsystems
This release adds a sample-time diagnostic that detects an enabled subsystem
in multitasking solver mode that operates at multiple rates or a conditionally
executed subsystem that contain an asynchronous subsystem. Such
subsystems can cause corrupted data or non-deterministic behavior in a
real-time system using code generated from the model. See the documentation
for theMultitask Conditionally Executed Subsystem diagnostic for more
information.

Embedded MATLAB Function Block Features and
Changes

Option to Disable Saturation on Integer Overflow
The properties dialog for Embedded MATLAB Function blocks provides a new
Saturate on Integer Overflow check box that lets you disable saturation on
integer overflow to generate more efficient code. When you enable saturation
on integer overflow, Embedded MATLAB Function blocks add additional
checks in the generated code to detect integer overflow or underflow.
Therefore, it is more efficient to disable this option if your algorithm does not
rely on overflow behavior. For more information, see “MATLAB Function
Block Properties” in the online Simulink documentation.

Nontunable Option Allows Use of Parameters in Constant
Expressions
The Data properties dialog for the MATLAB Function (formally called
Embedded MATLAB Function) block provides a new Tunable check box
that lets you specify the tunability (see “Tunable Parameters” in the online
Simulink documentation) of a workspace variable or mask parameter used
as data in Embedded MATLAB code. The option is checked by default.
Unchecking the option allows you to use a workspace variable or mask
parameter as data wherever Embedded MATLAB requires a constant
expression, such as a dimension argument to the zeros function. For more
information, see “Adding Data to a MATLAB Function Block” in the online
Simulink documentation.

285

Simulink® Release Notes

Enhanced Support for Fixed-Point Arithmetic
Embedded MATLAB Function blocks support the new fixed-point features
introduced in Version 1.4 (R2006a) of the Fixed-Point Toolbox software,
including [Slope Bias] scaling (see “Specifying Simulink Fixed Point Data
Properties” in the online Simulink documentation). For information about
the features added to the Fixed-Point Toolbox software, see “Fixed-Point
Toolbox Release Notes”.

Support for Integer Division
Embedded MATLAB Function blocks support the new MATLAB function
idivide, which performs integer division with a variety of rounding options.
It is recommended that the rounding option used for integer division in
Embedded MATLAB Function blocks match the rounding option in the parent
Simulink model.

The default rounding option for idivide is 'fix', which rounds toward
zero. This option corresponds to the choice Zero in the submenu for Signed
integer division rounds to:, a parameter that you can set in the Hardware
Implementation Pane of the Configuration Parameters dialog in Simulink
software (see “Hardware Implementation Pane” in the online Simulink
documentation). If this parameter is set to Floor in the Simulink model that
contains the Embedded MATLAB Function block, it is recommended that you
pass the rounding option 'floor' to idivide in the block.

For a complete list of Embedded MATLAB runtime library functions provided
in this release, see “New Embedded MATLAB Runtime Library Functions”
on page 286.

New Embedded MATLAB Runtime Library Functions
Embedded MATLAB Function blocks provide new runtime library functions
in the following categories:

• “Integer Arithmetic” on page 287

• “Linear Algebra” on page 287

• “Logical” on page 288

• “Polynomial” on page 288

286

Version 6.4 (R2006a) Simulink® Software

• “Trigonometric” on page 288

Integer Arithmetic.

• idivide

Linear Algebra.

• compan

• dot

• eig

• fliplr

• flipud

• freqspace

• hilb

• ind2sub

• invhilb

• linspace

• logspace

• magic

• median

• meshgrid

• pascal

• qr

• rot90

• sub2ind

• toeplitz

• vander

• wilkinson

287

Simulink® Release Notes

Logical.

• isequal

• isinteger

• islogical

Polynomial.

• polyfit

• polyval

Trigonometric.

• acosd

• acot

• acotd

• acoth

• acsc

• acscd

• acsch

• asec

• asecd

• asech

• asind

• atand

• cosd

• cot

• cotd

• coth

• csc

288

Version 6.4 (R2006a) Simulink® Software

• cscd

• csch

• sec

• secd

• sech

• sind

• tand

Setting FIMATH Cast Before Sum to False No Longer Supported
in Embedded MATLAB MATLAB Function Blocks
You can no longer set the FIMATH property CastBeforeSum to false for
fixed-point data in Embedded MATLAB Function blocks.

Compatibility Considerations. The reason for the restriction is that
Embedded MATLAB Function blocks do not produce the same numerical
results as MATLAB when CastBeforeSum is false. In the previous release,
Embedded MATLAB Function blocks set CastBeforeSum to false by default
for the default FIMATH object. If you have existing models that contain
Embedded MATLAB Function blocks in which CastBeforeSum is false, you
will get an error when you compile or update your model. To correct the issue,
you must set CastBeforeSum to true. To automate this process, you can run
the utility slupdate either from the Model Advisor or by typing the following
command at the MATLAB command line:

slupdate ('modelname')

where ’modelname’ is the name of the model containing the Embedded
MATLAB Function block that generates the error. slupdate prompts you to
update this property by selecting one of these options:

289

Simulink® Release Notes

Option Action

Yes Updates the first occurrence of CastBeforeSum=false in
Embedded MATLAB Function blocks in the offending model and
then prompts you for each subsequent one found in the model.

No Does not update any occurrences of CastBeforeSum=false in
the offending model.

All Updates all occurrences of CastBeforeSum=false in the
offending model.

Note slupdate detects CastBeforeSum=false only in default FIMATH objects
defined for Simulink software signals in Embedded MATLAB Function
blocks. If you modified the FIMATH object in an Embedded MATLAB Function
block, update CastBeforeSum manually in your model and fix the errors as
they are reported.

Type Mismatch of Scalar Output Data in Embedded MATLAB
Function Blocks Generates Error
Embedded MATLAB Function blocks now generate an error if the output type
inferred by the block does not match the type you explicitly set for a scalar
output.

Compatibility Considerations. In previous releases, a silent cast was
inserted from the computed type to the set type when mismatches occurred.
In most cases, you should not need to set the output type for Embedded
MATLAB Function blocks. When you do, insert an explicit cast in your
Embedded MATLAB script. For example, suppose you declare a scalar output
y to be of type int8, but its actual type is double. Replace y with a temporary
variable t in your script and then add the following code:

y = int8(t);

290

Version 6.4 (R2006a) Simulink® Software

Implicit Parameter Type Conversions No Longer Supported in
Embedded MATLAB Function Blocks
Embedded MATLAB Function blocks now generate an error if the type of a
parameter inferred by the block does not match the type you explicitly set
for the parameter.

Compatibility Considerations. In the previous release, if the type you
set for a parameter did not match the actual parameter value, Embedded
MATLAB Function blocks implicitly cast the parameter to the specified
type. Now you receive a compile-time error when type mismatches occur for
parameters defined in Embedded MATLAB Function blocks.

There are two workarounds:

• Change the scope of the data from Parameter to Input. Then, connect to
the input port a Constant block that brings in the parameter and casts it
to the desired type.

• Cast the parameter inside your Embedded MATLAB function to the
desired type.

Fixed-Point Parameters Not Supported
Embedded MATLAB Function blocks generate a compile-time error if you try
to bring a fi object defined in the base workspace into Embedded MATLAB
Function blocks as a parameter.

There are two workarounds:

• Change the scope of the data from Parameter to Input. Then, connect to
the input port a Constant block that brings in the parameter and casts
it to fixed-point type.

• Cast the parameter inside your Embedded MATLAB function to fixed-point
type.

Embedded MATLAB Function Blocks Require C Compiler for
Windows 64
No C compiler ships with MATLAB and Simulink products on Windows 64.
Because Embedded MATLAB Function blocks perform simulation through

291

Simulink® Release Notes

code generation, you must supply your own MEX-supported C compiler to use
these blocks. The C compilers available at the time of this writing for Windows
64 include Microsoft Visual Studio® 2005 and the Microsoft Platform SDK.

292

Version 6.3 (R14SP3) Simulink® Software

Version 6.3 (R14SP3) Simulink Software
This table summarizes what’s new in V6.3 (R14SP3):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
at Web site

New features and changes introduced in this version are organized by these
topics:

• “Model Referencing” on page 293

• “Block Enhancements” on page 295

• “Modeling Enhancements” on page 297

• “Simulation Enhancements” on page 299

• “User Interface Enhancements” on page 300

• “MEX-Files on Windows Systems” on page 301

• “Fixed-Point Functions No Longer Supported for Use in Signal Objects”
on page 301

• “Parameter Object Expressions No Longer Supported in Dialog Boxes”
on page 301

• “MEX-File Extension Changed” on page 302

Model Referencing
This topic contains new features and changes for model reference:

293

http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP3
http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP3

Simulink® Release Notes

New Features and Changes

Function-Call Models. This release allows you to use a block capable
of emitting a function-call signal, such as a Function-Call Generator or
a custom S-function, in one model to control execution of another model
during the current time step. See “Function-Call Subsystems” in the
Simulinkdocumentation for more information.

Using Noninlined S-Functions in Referenced Models. This release adds
limited support for use of noninlined S-functions in models referenced by
other models. For example, you can simulate a model that references models
containing noninlined S-functions. However, you cannot use Real-Time
Workshop software to generate a standalone executable (Real-Time Workshop
target) for the model. See “Model Referencing Limitations” in the Simulink
documentation for information on other limitations.

Referenced Models Without Root I/O Can Inherit Sample Times.
Previous releases of Simulink software do not allow referenced models
without root-level input or output ports to inherit their sample time. This
release removes this restriction.

Referenced Models Can Use Variable Step Solvers. Previous releases
of Simulink software do not allow models to reference models that require
variable-step solvers. This release removes this restriction.

Model Dependency Graphs Accessible from the Tools Menu. This
release adds a Model Reference Dependency Graph item to the Model
Editor’s Tools menu. The item displays a graph of the models referenced by
the model displayed in the Model Editor. You can open any model in the
dependency graph by clicking its node. See “Viewing a Model Reference
Hierarchy” in the Simulinkdocumentation for more information.

Command That Converts Atomic Subsystems to Model
References. This release introduces a MATLAB command
that converts an atomic subsystem to a model reference. See
Simulink.SubSystem.convertToModelReference in the Simulink Reference
documentation for more information.

Model Reference Demos. This release has the following model reference
demo changes:

294

Version 6.3 (R14SP3) Simulink® Software

• Model reference demo names are now prepended with sldemo_. For
example, the demo mdlref_basic.mdl is now sldemo_mdlref_basic.mdl.

• You can no longer use the mdlrefdemos command from the MATLAB
command prompt to access model reference demos. Instead, you can
navigate to the Simulink demos tab either though the Help browser, or by
typing demos at the command prompt, then navigating to the Simulink
demos category and browsing the demos.

Block Enhancements

Variable Transport Delay, Variable Time Delay Blocks
This release replaces the Variable Transport Delay block of previous releases
with two new blocks. The Variable Transport Delay block of previous releases
implemented a variable time delay behavior, which is now implemented
by the Variable Time Delay block introduced in this release. This release
changes the behavior of the Variable Transport Delay block to model variable
transport delay behavior, e.g., the behavior of a fluid flowing through a pipe.

Additional Reset Trigger for Discrete-Time Integrator Block
This release adds a sampled level trigger option for causing the
Discrete-Time Integrator to reset. The new reset trigger is more efficient than
the level reset option, but may introduce a discontinuity when integration
resumes.

Note In Simulink 6.2 and 6.2.1, the level reset option behaves like the
sampled level option in this release. This release restores the level reset
option to its original behavior.

Input Port Latching Enhancements
This release includes the following enhancements to the signal latching
capabilities of the Inport block.

295

Simulink® Release Notes

Label Clarified for Triggered Subsystem Latch Option. The dialog box
for an Inport block contains a check box to latch the signal connected to the
system via the port. This check box applies only to triggered subsystems and
hence is enabled only when the Inport block resides in a triggered subsystem.
In this release, the label for the check box that selects this option has changed
from Latch (buffer) input to Latch input by delaying outside signal.
This change is intended to make it clear what the option does, i.e., cause the
subsystem to see the input signal’s value at the previous time step when
the subsystem executes at the current time step (equivalent to inserting a
Memory block at the input outside the subsystem). The Inport block’s icon
displays <Lo> to indicate that this option is selected.

Latch Option Added for Function-Call Subsystems. This release adds
a check box labeled Latch input by copying inside signal to the Inport
block’s dialog box. This option applies only to function-call subsystems and
hence is enabled only if the Inport block resides in a function-call subsystem.
Selecting this option causes Simulink software to copy the signal output by
the block into a buffer before executing the contents of the subsystem and
to use this copy as the block’s output during execution of the subsystem.
This ensures that the subsystem’s inputs, including those generated by the
subsystem’s context, will not change during execution of the subsystem. The
Inport block’s icon displays to indicate that this option is selected.

Improved Function-Call Inputs Warning Label
In previous releases, the dialog box for a function-call subsystem contains
a check box labeled Warn if function-call inputs arise inside called
context. This release changes the label to Warn if function-call inputs
are context-specific. This change is intended to indicate more clearly the
warning’s purpose, i.e., to alert you that some or all of the function-call inputs
come from the function-call subsystem’s context and hence could change while
the function-call subsystem is executing.

Note In this release, you can avoid this function-call inputs problem
by selecting the Latch input by copying inside signal option on the
subsystem’s Inport blocks (see “Latch Option Added for Function-Call
Subsystems” on page 296).

296

Version 6.3 (R14SP3) Simulink® Software

Modeling Enhancements

Annotations
This release introduces the following enhancements to model annotations:

• Annotation properties dialog box (see “Annotations Properties Dialog Box”
in the Simulinkdocumentation)

• Annotation callback functions (see “Annotation Callback Functions” in
the Simulinkdocumentation)

• Annotation application programming interface (see “Annotations API” in
the Simulinkdocumentation)

Custom Signal Viewers and Generators
This release allows you to add custom signal viewers and generators so that
you can manage them in the Signal & Scope Manager. See “Visualizing and
Comparing Simulation Results” in the Simulink documentation for further
details.

Model Explorer Search Option
This release adds an Evaluate Property Values During Search option to
the Model Explorer. This option applies only for searches by property value.
If enabled, the option causes the Model Explorer to evaluate the value of
each property as a MATLAB expression and compare the result to the search
value. If disabled (the default), the Model Explorer compares the unevaluated
property value to the search value.

Using Signal Objects to Assign Signal Properties
Previous releases allow you to use signal objects to check signal property
values assigned by signal sources. This release allows you, in addition, to
use signal objects to assign values to properties not set by signal sources.
See Simulink.Signal in the Simulink Reference documentation for more
information.

297

Simulink® Release Notes

Bus Utility Functions
This release introduces the following bus utility functions:

• Simulink.Bus.save

• Simulink.Bus.createObject

• Simulink.Bus.cellToObject

Fixed-Point Support in Embedded MATLAB Function Blocks
In this release, the Embedded MATLAB Function block supports many
Fixed-Point Toolbox functions. This allows you to generate code from models
that contain fixed-point M functions. See “Code Acceleration and Code
Generation from MATLAB for Fixed-Point Algorithms” in the Fixed-Point
Toolbox documentation for more information.

Note You must have a Simulink Fixed Point license to use this capability.

Embedded MATLAB Function Editor
The Embedded MATLAB Editor has a new tool, the Ports and Data Manager.
This tool helps you manage your block inputs, outputs, and parameters.
The Ports and Data Manager uses the same Model Explorer dialogs for
manipulating data, but restricts the view to the block you are working on.
You can still access the Model Explorer via a menu item to get the same
functionality as in previous releases.

Input Trigger and Function-Call Output Support in Embedded
MATLAB Function Blocks
Embedded MATLAB Function blocks now supports input triggers
and function-call outputs. See “Ports and Data Manager” in the
Simulinkdocumentation for more information.

Find Options Added to the Data Object Wizard
This release adds find options to the Data Object Wizard. The options
enable you to restrict the search for model data to specific kinds of objects. See
“Data Object Wizard” in the Simulinkdocumentation for more information.

298

Version 6.3 (R14SP3) Simulink® Software

Simulation Enhancements

Viewing Logged Signal Data
This release can display logged signal data in the MATLAB Times Series
Tools viewer on demand or whenever a simulation ends or you pause a
simulation. See “Viewing Logged Signal Data” in the Simulink documentation
for more information.

Importing Time-Series Data
In this release, root-level Inport blocks can import data from time-series
(see Simulink.Timeseries in the Simulink Reference documentation)
and time-series array (see Simulink.TSArray in the Simulink Reference
documentation) objects residing in the MATLAB workspace. See “Importing
MATLAB timeseries Data to a Root-Level Input Port” in the Simulink
documentation for more information. From Workspace blocks can also import
time-series objects. The ability to import time-series objects allows you to use
data logged from one simulation as input to another simulation.

Using a Variable-Step Solver with Rate Transition Blocks
Previous releases of Simulink software generate an error if you try to use a
variable-step solver to solve a model that contains Rate Transition blocks.
This release allows you to use variable-step as well as fixed-step solvers to
simulate a model. Note that you cannot generate code from a model that
uses a variable-step solver. However, you may find it advantageous, in some
cases, to use a variable-step solver to test aspects of the model not directly
related to code generation. This enhancement allows you to switch back and
forth between the two types of solver without having to remove and reinsert
Rate Transition blocks.

Additional Diagnostics
This release adds the following simulation diagnostics:

• “Enforce sample times specified by Signal Specification blocks” in the
online Simulink documentation

• “Extraneous discrete derivative signals” in the online Simulink
documentation

299

Simulink® Release Notes

• “Detect read before write” in the online Simulink documentation

• “Detect write after read” in the online Simulink documentation

• “Detect write after write” in the online Simulink documentation

Data Integrity Diagnostics Pane Renamed, Reorganized
This release changes the name of the Data Integrity diagnostics pane of the
Configuration Parameters dialog box to the Data Validity pane. It also
reorganizes the pane into groups of related diagnostics. See “Diagnostics Pane:
Data Validity” in the online Simulink documentation for more information.

Improved Sample-Time Independence Error Messages
When you enable the Ensure sample time independent solver constraint
(see “Periodic sample time constraint” for more information), Simulink
software generates several error messages if the model is not sample-time
independent. In previous releases, these messages were not specific enough
for you to determine why a model failed to be sample-time independent. In
this release, the messages point to the specific block, signal object, or model
parameter that causes the model not to be sample-time independent.

User Interface Enhancements

Model Viewing
This release adds the following model viewing enhancements:

• A command history for pan and zoom commands (see “Viewing Command
History” in the Simulinkdocumentation)

• Keyboard shortcuts for panning model views (see “Model Viewing
Shortcuts” in the Simulinkdocumentation)

Customizing the Simulink User Interface
This release allows you to use M-code to perform the following customizations
of the standard Simulink user interface:

• Add custom commands to the Model Editor’s Tools menu (see “Disabling
and Hiding Dialog Box Controls” in the Simulink documentation)

300

Version 6.3 (R14SP3) Simulink® Software

• Disable, or hide widgets on Simulink dialog boxes (see “Disabling and
Hiding Dialog Box Controls” in the Simulink documentation)

MEX-Files on Windows Systems
In this release, the extension for files created by the MATLAB mex command
on Windows systems has changed from dll to mexw32 or mexw64.

Compatibility Considerations
If you have implemented any S-functions in C, Ada, or Fortran or have models
that reference other models, you should

• Recreate any mexopts.bat files (other than the one in your MATLAB
preferences directory) that you use to build S-functions and model reference
simulation targets

• Rebuild your S-functions

Fixed-Point Functions No Longer Supported for Use
in Signal Objects

Compatibility Considerations
Previous releases allowed you to use fixed-point data type functions, such as
sfix, to specify the value of the DataType property of a Simulink.Signal
object. This release allows you to use only built-in data types and
Simulink.NumericType objects to specify the data types of Simulink.Signal
objects. See the Simulink.Signal documentation for more information.

Parameter Object Expressions No Longer Supported
in Dialog Boxes

Compatibility Considerations
Previous releases allow you to specify a Simulink.Parameter object as the
value of a block parameter by entering an expression that returns a parameter
object in the parameter’s value field in the block’s parameter dialog box. In
this release, you must enter the name of a variable that references the object
in the MATLAB or model workspace.

301

Simulink® Release Notes

MEX-File Extension Changed
In this release, the extension for files created by the MATLAB mex command
has changed from dll to mexw32 (and mexw64).

Compatibility Considerations
If you use a mexopts.bat file other than the one created by the mex command
in your MATLAB preferences directory to build Accelerator targets, you
should recreate the file from the mexopts.bat template that comes with this
release.

302

Version 6.2 (R14SP2) Simulink® Software

Version 6.2 (R14SP2) Simulink Software
This table summarizes what’s new in V6.2 (R14SP2):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes Details below Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Bug Reports
at Web site

New features, changes, and limitations in this version are

• “Multiple Signals on Single Set of Axes” on page 303

• “Logging Signals to the MATLAB Workspace” on page 303

• “Legends that Identify Signal Traces” on page 303

• “Displaying Tic Labels” on page 304

• “Opening Parameters Dialog Box” on page 304

• “Rootlevel Input Ports” on page 304

See the Simulink 6.2 documentation for more information on these
enhancements.

Multiple Signals on Single Set of Axes
Viewers can now display multiple signals on a single set of axes.

Logging Signals to the MATLAB Workspace
Viewers can now log the signals that they display to the MATLAB base
workspace. See “Exporting Signal Data Using Signal Logging” for more
information.

Legends that Identify Signal Traces
Viewers can now display a legend that identifies signal traces.

303

http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP2
http://www.mathworks.com/support/bugreports/?product=SL&release=R14SP2

Simulink® Release Notes

Displaying Tic Labels
Viewers can now display tic labels both inside and outside scope axes.

Opening Parameters Dialog Box
You can open a viewer’s parameters dialog box by right-clicking on the viewer
scope.

Rootlevel Input Ports

Compatibility Considerations
If you save a model with rootlevel input ports in this release and load it in a
previous release, you will get the following warning:

Warning: model, line xxx block_diagram does not have a parameter

named 'SignalName'.

You can safely ignore this warning.

304

Version 6.1 (R14SP1) Simulink® Software

Version 6.1 (R14SP1) Simulink Software
This table summarizes what’s new in V6.1 (R14SP1):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

No Fixed Bugs

New features and changes introduced in this version are:

• “Changed Source Dialog Box Behavior” on page 305

• “Changed Model Explorer Source Behavior” on page 306

• “Affected Blocks” on page 306

• “Model Load Warnings” on page 307

In this release, Simulink software no longer provides the user with the ability
to change the values of source block parameters through either a dialog box or
the Model Explorer while a simulation is running.

*Changes described in this section reflect Simulink software reprogramming
implemented to comply with a court decision regarding patent litigation.

Changed Source Dialog Box Behavior
In this release, opening the dialog box of a source block with tunable
parameters causes a running simulation to pause. While the simulation
is paused, you can edit the parameter values displayed on the dialog box.
However, you must close the dialog box to have the changes take effect and
allow the simulation to continue. Similarly, starting a simulation causes any
open dialog boxes associated with source blocks with tunable parameters
to close.

Since you can no longer change source block parameters while a simulation
is running, this release removes the Apply button from the dialog boxes
of source blocks.

305

Simulink® Release Notes

Note In this release, as in previous releases, if you enable the Inline
parameters option, Simulink software does not pause the simulation when
you open a source block’s dialog box because all of the parameter fields are
disabled and can be viewed but cannot be changed.

Changed Model Explorer Source Behavior
In this release, the parameter fields in both the list view and the dialog pane
of the Model Explorer have been disabled and the Apply button has been
removed for source blocks with tunable parameters while a simulation is
running. As a result, you can no longer use the Model Explorer to change
source block parameters while a simulation is running.

Affected Blocks
Blocks affected are all source blocks with tunable parameters, including the
following blocks.

• Simulink source blocks, including

- Band-Limited White Noise

- Chirp Signal

- Constant

- Pulse Generator

- Ramp

- Random Number

- Repeating Sequence

- Signal Generator

- Sine Wave

- Step

- Uniform Random Number

• User-developed masked subsystem blocks that have one or more tunable
parameters and one or more output ports, but no input ports.

306

Version 6.1 (R14SP1) Simulink® Software

• S-Function and M-file (level 2) S-Function blocks that have one or more
tunable parameters and one or more output ports but no input ports.

• Source blocks in other MathWorks products, including:

- CDMA Reference Blockset product

- Communications Blockset product

- Embedded Target for TI’s C6000™ DSP

- Signal Processing Blockset product (formerly DSP Blockset)

- Simulink Fixed Point product (formerly Fixed-Point Blockset)

- System Identification Toolbox™ product

- xPC Target product

- xPC TargetBox® product

See the release notes for each product for a list of that product’s source
blocks affected by the changes in this release.

Model Load Warnings

Compatibility Considerations
If you open a model in Simulink 6.0 that was created or saved with Simulink
6.1, Simulink 6.0 displays warnings that the following parameters are
undefined:

• StrictBusMsg

• MdlSubVersion

Depending on the model, Simulink 6.0 may also display a warning that the
parameter BusObject is not defined. You can safely ignore these warnings.

307

Simulink® Release Notes

Version 6.0 (R14) Simulink Software
This table summarizes what’s new in V6.0 (R14):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Fixed Bugs

New features and changes introduced in this version are organized by these
topics:

• “Model Explorer” on page 309

• “Configuration Sets” on page 309

• “Model Referencing” on page 309

• “Model Workspaces” on page 310

• “Implicit Fixed-Step Solver” on page 311

• “The Signal and Scope Manager” on page 311

• “Data Object Type Enhancements” on page 311

• “Block Enhancements” on page 312

• “Signal Enhancements” on page 315

• “Rate Transition Enhancements” on page 316

• “Execution Context Enhancements” on page 317

• “Algebraic Loop Minimization” on page 317

• “Level-2 M-File S-Functions” on page 317

• “Panning Model Diagrams” on page 318

• “MATLAB Data Type Conversions” on page 318

• “Signal Object Resolution Changes” on page 318

• “Loading Models Containing Non-ASCII Characters” on page 319

308

Version 6.0 (R14) Simulink® Software

• “Change in Sample Time Behavior of Unary Minus Block” on page 320

• “Initial Output of Conditionally Executed Subsystems” on page 320

• “Execution Context Default Changes” on page 320

• “Simulink Accelerator Switch Blocks Can Abort Code Generation” on page
320

Model Explorer
The Model Explorer is a new tool that lets you quickly navigate, view, create,
configure, search, and modify all data and properties of a Simulink model or
Stateflow chart. See “The Model Explorer: Overview” in the online Simulink
help for more information.

Configuration Sets
This release introduces configuration sets. A configuration set is a named set
of values for simulation parameters, such as solver type and simulation start
or stop time. Every new model is created with a configuration set that is
initialized from a global default configuration set. You can create additional
configuration sets for a given model and designate any of them as the active
set with the click of a mouse button. See “Manage a Configuration Set” in the
online Simulink documentation for more information.

Configuration Parameters Dialog Box
This release replaces the Simulation Parameters dialog box with the
Configuration Parameters dialog box. The Configuration Parameters
dialog box allows you to set a model’s active configuration parameters. You
can also use the Model Explorer to set the active configuration parameters
as well as inactive parameters. See “Configuration Parameters Dialog Box”
for more information.

Model Referencing
This release introduces model referencing, a feature that lets a model include
other models as modular components. You include other models in a model
by using Model blocks to reference the included models. Like subsystems,
model referencing allows you to organize large models hierarchically, with
Model blocks representing major subsystems. However, model referencing

309

Simulink® Release Notes

has significant advantages over subsystems in many applications. The
advantages include:

• Modular development

You can develop the referenced model independently from the models in
which it is used.

• Inclusion by reference

You can reference a model multiple times in another model without having
to make redundant copies. Multiple models can also reference the same
model.

• Incremental loading

The referenced model is not loaded until it is needed, speeding up model
loading.

• Incremental code generation

Simulink and Real-Time Workshop products create binaries to be used in
simulations and standalone applications to compute the outputs of the
included blocks. Code generation occurs only for models that have changed.

See “Referencing a Model” in the online Simulink documentation for more
information. For a demonstration of a way to automate conversion of an
existing model’s subsystems to model references, execute mdlref_conversion
at the MATLAB Command Line. For a summary of limitations on the use of
model referencing in this release, see “Model Referencing Limitations”.

Model Workspaces
In this release, Simulink software provides each model with its own
workspace for storing data. Models can access data in their own workspaces
as well as data in models that reference them and in the base (i.e., MATLAB)
workspace. Model workspaces allow you to create data for one model without
fear of inadvertently altering another model’s data. See “Using Model
Workspaces” for more information.

310

Version 6.0 (R14) Simulink® Software

Implicit Fixed-Step Solver
This release includes a new fixed-step solver named ode14x. This is an
implicit, extrapolating fixed-step solver whose extrapolation order and
number of Newton’s method iterations can be specified via Simulink
configuration parameters. The ode14x solver is faster than Simulink explicit
fixed-step solvers for certain types of stiff systems that require a very small
step size to avoid unstable solutions.

The Signal and Scope Manager
The Signal and Scope Manager is a new Simulink feature that enables you
to globally manage signal generators and viewers. See “Signal and Scope
Manager” in the online Simulink help for more information.

Data Object Type Enhancements
This release introduces the following types of objects for specifying the
properties of model signals and parameters (i.e., model data):

Object Class Purpose

Simulink.AliasType Specify another name for a data
type.

Simulink.NumericType Define a custom data type.

Simulink.Bus Define a signal bus.

See “Working with Data Types” and “Simulink Classes” in the Simulink
online documentation for more information.

This release also adds the following properties to Simulink.Signal class:

• Dimensions

• SampleTime

• SamplingMode

• DataType

• Complexity

311

Simulink® Release Notes

Simulink software checks the consistency of these properties against the
values set on the ports/dwork elements associated with each signal object.

Note If an attribute is set as auto / -1 (not specified), then no consistency
checking is done.

Block Enhancements
This release includes the following block-related enhancements.

New Blocks
This release introduces the following blocks.

• The Signal Conversion block enables you to convert virtual buses to
nonvirtual buses, and vice versa.

• The Environment Controller block’s output depends on whether the model
is being used for simulation or code generation.

• The Bias block adds a specified bias value to its input and outputs the
result.

• MATLAB Function (formally called Embedded MATLAB Function) block
enables you to include MATLAB code in models from which you intend to
generate code, using Real-TimeWorkshop® software.

• The Model block allows you to include other models in a model (see “Model
Referencing” on page 309).

Fixed-Point-Capable Blocks
This release adds fixed-point data capability to many existing Simulink blocks
and includes fixed-point blocks previously available only with the Fixed-Point
Blockset. To use the fixed-point data capability of these blocks, you must
install the Simulink Fixed Point product on your system. See “Fixed-Point
Data” in the online Simulink documentation for more information.

312

Version 6.0 (R14) Simulink® Software

Port Values Display
This release of Simulink software can display block outputs as data tips on a
block diagram while a simulation is running. This allows you to observe block
outputs without having to insert Scope or Display blocks. See “Displaying
Block Outputs” in the online Simulink documentation for more information.

User-Specifiable Sample Times
This release expands the number of blocks with user-specifiable sample times
to include most built in Simulink blocks. In previous releases, most builtin
blocks inherited their sample times directly or indirectly from the blocks to
which they were connected. In this release, most blocks continue to inherit
their sample times by default. However, you can override this default setting
in most cases to specify a nondefault sample time, using either the block’s
parameter dialog box or a set_param command. This avoids the need to use
Signal Specification blocks to introduce nondefault sample times at specific
points in a model.

Improved Initial Output Handling
In previous Simulink releases, the Constant, Initial Condition, Unit Delay,
and other blocks write out their initial output values in their mdlStart
method. This behavior can cause unexpected block output initialization. For
example, if a Constant block in an enabled subsystems feeds an Outport block
whose IC is set to [], the Constant value appears even when the enabled
subsystem is not enabled.

It is desirable in some cases for a block to write its initial output value in
its mdlStart method. For example, discrete integrator block may need
to read the value from its external IC port to setting the initial state in
mdlInitialize method.

This release addresses these problems by implementing a hand-shaking
mechanism for handling block initial output. Under this mechanism, a block
only computes its initial output value when it is requested by its downstream
block. For example, if a Constant block feeds the external IC port of a Discrete
Integrator block, the discrete integrator block’s external IC port requests the
Constant block to compute its initial output value in its mdlStart method.

313

Simulink® Release Notes

Bus-Capable Nonvirtual Blocks
In previous releases, Simulink software propagated buses only through
virtual blocks, such as subsystems. In this release, Simulink software also
propagates buses through the following nonvirtual blocks:

• Memory

• Merge

• Switch

• Multiport Switch

• Rate Transition

• Unit Delay

• Zero-Order Hold

Some of these blocks impose constraints on bus propagation through them.
See the documentation for the individual blocks for more information.

Duplicate Input Ports
This release allows you to create duplicates of Inport blocks in a model. A
model can contain any number of duplicates of an original Inport block. The
duplicates are graphical representations of the original intended to simplify
block diagrams by eliminating unnecessary lines. The duplicate has the same
port number, properties, and output as the original. Changing a duplicate’s
properties changes the original’s properties and vice versa. See the Inport
block documentation for more information.

Inport/Outport Block Display Options
Inport and Outport blocks can now optionally display their port number,
signal name, or both the number and the name. See the online documentation
for the Inport and Outport blocks for more information.

Zero- and One-Based Indexing
In this release, some blocks that use indices provide the option for indices to
start at 0 or 1. The default is one-based indexing to maintain compatibility

314

Version 6.0 (R14) Simulink® Software

with previous releases. Blocks that now support zero- or one-based indexing
include

• Selector

• For Iterator

• Assignment

Runtime Block API
This release introduces an application programming interface (API) that
enables programmatic access to block data, such as block inputs and outputs,
parameters, states, and work vectors, while a simulation is running. You can
use this interface to develop MATLAB programs capable of accessing block
data while a simulation is running or to access the data from the MATLAB
command line. See “Accessing Block Data During Simulation” for more
information.

Command-Line API to Signal Builder Block
This release provides a command, signalbuilder, for creating and accessing
Signal Builder blocks in a model.

Signal Enhancements
This release includes the following signal-related enhancements.

Test Point Indicators
This release can optionally use indicators on a block diagram to indicate
signals that are test points. See “Displaying Test Point Indicators” in the
online documentation for more information.

Signal Logging
This release allows you to log signal data during simulation. See “Exporting
Signal Data Using Signal Logging” for more information.

315

Simulink® Release Notes

Internal Signal Structures Revamped
This release revamps the sigmap, siglists and sigregions structures to
support signal logging and other signal-related enhancements.

Compatibility Considerations. S-functions created prior to Version 6 (R14).
that access the sigmap, siglists and sigregions structures might generate
segmentation violations. To avoid this, recompile the S-functions in Version 6
(R14) or subsequent releases.

Edit-Time Signal Label Propagation
In this release, when you change a signal label, Simulink software
automatically propagates the change to all downstream instances of the label.
You do not have to update the diagram as in previous releases.

Bus Editor
The new Bus Editor enables you to create and modify bus objects in the
Simulink base (MATLAB) workspace. See "Bus Editor" for more information.

Rate Transition Enhancements
This release provides the following enhancements to the handling of rate
transitions in models.

Rate Transition Block Determines Transition Type Automatically
The Rate Transition block now determines the type of transition that occurs
between the source and destination block (i.e., fast-to-slow or slow-to-fast).
Therefore, this release eliminates the transition type option on the block’s
parameter dialog.

Automatic Insertion of Rate Transition Blocks
This release introduces an option to insert hidden rate transition blocks
automatically between blocks that operate at different rates. This saves you
from having to insert rate transition blocks manually in order to avoid illegal
rate transitions. The inserted blocks are configured to ensure that data is
transferred deterministically and that data integrity is maintained during the
transfer. See “Automatically handle rate transition for data transfer” in the
online Simulink documentation for more information.

316

Version 6.0 (R14) Simulink® Software

User-Specifiable Output Sample Time
The Rate Transition Block’s parameter dialog box contains a new parameter:
Output Port Sample Time. This parameter allows you to specify the output
rate to which the input rate is converted. If you do not specify a rate, the
Rate Transition block inherits its output rate from the block to which its
output is connected.

Execution Context Enhancements
This releases introduces the following enhancements to execution context
propagation.

Enabling Execution Context Propagation
This release allows you to specify whether to permit execution contexts to be
propagated across a conditionally executed subsystem’s boundary. See the
documentation for the Subsystem block for more information.

Execution Context Indicator
This release optionally displays a bar across each input port and output port
of a subsystem that does not permit propagation of the subsystem’s execution
context. To enable this option, select Block Displays->Execution context
indicator from the model editor’s Format menu.

Algebraic Loop Minimization
This release can eliminate some types of algebraic loops involving atomic or
enabled subsystems or referenced models. See “How Simulink Eliminates
Artificial Algebraic Loops” in the online Simulink documentation for more
information.

Level-2 M-File S-Functions
This release introduces a new application programming interface (API) for
creating custom Simulink blocks based on M code. In contrast to the previous
API, designated Level 1, which supported a restricted set of block features,
the new API, designated Level 2, supports most standard Simulink block
features, including support for matrix signals and nondouble data types.

317

Simulink® Release Notes

See “Writing Level-2 MATLAB S-Functions” in the online documentation
for more information.

Panning Model Diagrams
You can now use the mouse to pan around model diagrams that are too large
to fit in the model editor’s window. To do this, position the mouse over the
diagram and hold down the left mouse button and the P or Q key on the
keyboard. Moving the mouse now pans the model diagram in the editor
window.

MATLAB Data Type Conversions
Release 14 introduces changes in the way MATLAB handles conversions from
double to standard MATLAB nondouble data types (e.g., int8, uint8, etc.) and
from one nondouble data type to another.

Compatibility Considerations
Previous releases of MATLAB use truncation to convert a floating point value
to an integer value, e.g., int8(1.7) = 1. Release 14 uses rounding, e.g.,
int8(1.7) = 2. See “New Nondouble Mathematics Features" in the Release
14 MATLAB Release Notes for a complete description of the changes in data
type conversion algorithms introduced in Release 14.

Such changes could affect the behavior of models that rely on nondouble
data type conversions of signals and block parameters. For example, a Gain
parameter entered as int8(3.7) ends up as 4 in this release as opposed to 3
in previous releases and this difference could change the simulation results.
Therefore, if the simulation results for your model differ in Release 14 from
previous releases, you should investigate whether the differences result from
the changes in data type conversion algorithms, and, if so, modify your model
accordingly.

Signal Object Resolution Changes
In previous releases, Simulink software attempted to resolve every named
signal to a Simulink.Signal object of the same name in the MATLAB
workspace.

318

Version 6.0 (R14) Simulink® Software

Compatibility Considerations
In this release, Simulink software lets you specify whether a named signal or
discrete state should resolve to a signal object, using the Signal Properties
dialog box and the State Properties of blocks that have discrete states, such
as the Discrete-Time Integrator. By default, Simulink software attempts to
resolve every named signal or state to a signal object regardless of whether
the model specifies that the signal or state should resolve to a signal object. If
the model does not specify resolution for a signal or state and it does resolve,
Simulink software displays a warning. You can also specify that Simulink
software attempt to resolve all named signals or states without warning of
implicit resolutions (the behavior in previous releases) or that it only resolve
signals and states that the model specifies should resolve (explicit resolution).

Explicit signal resolution is the recommended approach for doing signal
resolution as it ensures that signals that should be resolved are resolved and
signals that should not resolve are not resolved. This release includes a script
that facilitates converting models that use implicit signal resolution to use
explicit resolution. Enter help disableimplicitsignalresolution at the
MATLAB command line for more information.

Loading Models Containing Non-ASCII Characters
Release 14 of MATLAB introduces Unicode support. This enhancement allows
MATLAB and Simulink products to support character sets from different
encoding systems.

Compatibility Considerations
This change causes Simulink software to behave differently from previous
releases when loading a model containing non-ASCII characters. Previous
releases load such models regardless of whether the non-ASCII characters
are compatible with the current encoding system used by MATLAB. In
Release 14, Simulink software checks the characters in the model against the
current encoding setting of MATLAB. If they are incompatible, Simulink
software does not load the model. Instead, it displays an error message that
prompts you to change to a compatible MATLAB encoding setting, using
the slCharacterEncoding command.

319

Simulink® Release Notes

Change in Sample Time Behavior of Unary Minus
Block
Release 14 changes the sample time behavior of the Unary Minus block.

Compatibility Considerations
In Release 13, if the sample time of this block’s input is continuous, the
sample time of the block and its output is fixed in minor time step. This block
is fixed in minor step and the output signal is fixed in minor step when
the input is a continuos sample time signal. In Release 14, if the input is
continuous, the block and output sample time are continuous also.

Initial Output of Conditionally Executed Subsystems
In this release, the initial output is undefined if the Initial output port
specifies [].

Compatibility Considerations
In previous releases, if the Initial output parameter of an Outport block in a
conditionally executed subsystem specified [] as the initial output, the initial
output of this port was the initial output of the block driving the Outport block.

Execution Context Default Changes
In R14, execution context propagation does not cross conditionally executed
subsystem boundaries by default.

Compatibility Considerations
In R13 SP1 and DACORE2, execution contexts propagate across conditionally
executed subsystem boundaries by default. You need to choose the Propagate
execution context across subsystem boundary option in the subsystem’s
parameter dialog box.

Simulink Accelerator Switch Blocks Can Abort Code
Generation
In Release 13, accelerator code generation aborted for the case of a Switch
block configured with the Criteria for passing first input set to u2 ~=0,

320

Version 6.0 (R14) Simulink® Software

with vector inputs of width greater than the RollThreshold (5). Code
generation aborted with the following message:

%exit directive: Real-Time Workshop Fatal in block: "/B_1_28",
block type "Switch": No parameters to roll.

This release fixes the problem.

321

Simulink® Release Notes

Version 5.1 (R13SP1) Simulink Software
This table summarizes what’s new in V5.1 (R13SP1):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

No Fixed Bugs

New features and changes introduced in this version are:

• “Sample Time Parameters Exposed” on page 322

• “Enhanced Debugger” on page 323

• “Context-Sensitive Data Typing of Tunable Parameters” on page 325

• “Conditional Execution Behavior” on page 327

• “Function-Call Subsystem Enhancements” on page 330

• “External Increment Option Added To For Iterator Block” on page 330

• “Performance Improvements” on page 331

Sample Time Parameters Exposed
Sample time parameters of most Simulink built-in library blocks have been
exposed to the user. That is, the sample time parameter of these blocks has
been made accessible via the block’s dialog box or set_param. This means that
most nonvirtual blocks in the Simulink library have a user settable sample
time parameter. Prior to this exposure, these blocks had an internal inherited
sample time with the exception of the Constant block, which had a constant
(inf) sample time. By providing access to the sample time parameter, you
no longer need to use the Signal Specification block to apply a nondefault
sample times to these blocks.

322

../../../bugfixes_13SP1.html#Simulink

Version 5.1 (R13SP1) Simulink® Software

Enhanced Debugger
This release includes enhancements to the Simulink debugger that enable
you to step through a simulation showing information not visible in previous
releases. The enhancements include

• An expanded command set that now enables you to step a simulation
method by method. Previous releases showed only output methods.

• An expanded toolbar that gives you push button access to new debugger
commands

• A Simulation Loop pane that shows the current state of the simulation
at a glance

Note Methods are functions that Simulink software uses to solve a model
at each time step during the simulation. Blocks are made up of multiple
methods. "Block execution" in this documentation is shorthand notation
for "block methods execution." Block diagram execution is a multi-step
operation that requires execution of the different block methods in all the
blocks in a diagram at various points during the process of solving a model
at each time step during simulation, as specified by the simulation loop.

These changes allow you to pinpoint problems in your model with greater
accuracy. The following sections briefly describe the debugger enhancements.
See the Simulink documentation for a detailed description of the new features
and their usage.

Enhanced Debugger Commands
This release enhances the following debugger commands:

• step

In previous releases, this command advanced the simulation from the
current block Outputs method over any intervening methods to the next
block Outputs method. In this release, step advances the simulation
method by method, or into, over, or out of methods, from the first method
executed during the simulation to the last. This allows you to determine
the result of executing any model, subsystem, or block method executed

323

Simulink® Release Notes

during the simulation, including block Outputs, Update, and Derivative
methods as well as solver methods.

• next

In previous releases, this command advanced the simulation to the first
block Outputs method executed during the next time step. In this release,
it advances the simulation over the next method to be executed, executing
any methods invoked by the next method.

• break

In previous releases, this command set a breakpoint at the Outputs method
of a specified block. In the current release, it sets a breakpoint at any
specified method or on all the methods of a specified block.

• bafter

In previous releases, this command set a breakpoint after the Outputs
method of a specified block. In this release, it sets a breakpoint after a
specified method or after each of the methods of a specified block.

• minor

In previous releases, this command enabled or disabled stepping across
Outputs methods in minor time steps. In the current release, it enables or
disables in minor time steps breakpoints set by block for all methods.

New Debugger Commands
This release introduces the following debugger commands:

• elist

Displays the method execution lists for the root system and the nonvirtual
subsystems of the model being debugged.

• etrace

Causes the debugger to display a message in the MATLAB Command
Window every time a method is entered or exited while the simulation
is running.

• where

Displays the call stack of the method at which the simulation is currently
suspended.

324

Version 5.1 (R13SP1) Simulink® Software

Enhanced Debugger Toolbar
The debugger toolbar has been expanded to include buttons for the following
versions of the step command: step into, step over, step out, and step
top.

Simulation Loop Pane
This release adds a Simulation Loop pane to the debugger GUI that
displays by method the point in the simulation loop at which the simulation is
currently suspended. The debugger updates the pane after each step, next,
or continue command, enabling you to determine at a glance the point to
which the command advanced the simulation. The pane also allows you to
set breakpoints on simulation loop methods and to navigate to the block at
whose method the simulation is currently suspended.

Sorted List Pane
This release renames the Block Execution List pane of the debugger GUI to
the Sorted List pane to reflect more accurately what the pane contains. The
Sorted List pane displays for the root system and each nonvirtual subsystem
of the model being debugged a sorted list of the subsystem’s blocks. The sorted
lists enable you to determine the block IDs of a model’s blocks.

Context-Sensitive Data Typing of Tunable Parameters
In this release, if a model’s Inline parameters setting is selected, Simulink
software regards the data type of a tunable parameter as context-sensitive
if the data type is not specified. In particular, this release allows the block
that uses the parameter to determine the parameter’s data type. By contrast,
Release 13 regards the type of the parameter to be double regardless of
where it is used.

Change in Simulink Behavior
This change affects the behavior of Simulink software in two cases. First, in
Release 13, if a tunable parameter’s data type is unspecified and a block
that uses it needs to convert its type from double to another type, Simulink
software by default stops and displays an error message when you update
or simulate the model. The error alerts the user to the fact that the type
conversion is a downcast and hence could result in a loss of precision. In

325

Simulink® Release Notes

this release, by contrast, a typecast never occurs because the block itself
determines the appropriate type for the parameter. Hence, in this release,
Simulink software never generates a downcast error for tunable parameters
of unspecified data type.

The following model illustrates the difference in behavior between this release
and Release 13 in this case.

Assume that the model’s Inline parameters setting is selected (thereby
making parameters nontunable by default) and the model declares k as a
tunable parameter on the Model Configuration Parameters dialog box.
Also assume that the user has specified the value of k on the MATLAB
command line as follows:

>> k = 5.7

In other words, the user has specified a value for k but not a data type. In this
case, this release regards the type of k to be int16, the type required by the
Gain block to compute its output. By contrast, Release 13 regards the type of
k to be double and hence assumes that the Gain block must downcast k to
compute its output. Release 13 therefore stops and displays an error message
by default in this case when you update or simulate the model.

The behavior of this release also differs from Release 13 in the case where
a model uses a tunable parameter of unspecified data type in more than
one place in the model and the required data type differs in different
places. This case creates a conflict under the assumption that the block in
which the parameter is used determines the parameter’s data type. This
assumption requires Simulink software to assign different data types to the
same parameter, which is impossible. Therefore, in this release, Simulink
software signals an error to alert the user to the conflict. By contrast, in
Release 13, Simulink software does not throw an error because the data type
of the parameter is double regardless of where it is used. You can avoid

326

Version 5.1 (R13SP1) Simulink® Software

the conflicting data types error in Release 13SP1 by specifying the tunable
parameter’s data type.

The following model illustrates this change in behavior.

The two Gain blocks in this model both use k, a tunable parameter of
unspecified type, as their gain parameter. Computing the outputs of the
blocks requires that the gain parameter be of types int16 and int32,
respectively. In Release 13, Simulink software regards the data type of k to be
double and the Gain blocks use typecasts to convert k to the required type
in each case. Simulink software simulates the model without error (if the
parameter downcasting diagnostic is set to none or warning). By contrast,
this release signals an error because this model requires k to be both type
int16 and int32, an impossibility. You can avoid this error by explicitly
specifying k’s data type; for example:

k = int16(6);

Conditional Execution Behavior
This release augments the conditional input branch behavior of the previous
release with a more generalized behavior called conditional execution (CE)
behavior. The new behavior speeds simulation of models by eliminating
unnecessary execution of blocks connected to Switch, Multiport Switch, and
conditionally executed blocks.

327

Simulink® Release Notes

Note The Simulink documentation has not yet been updated to reflect the
new behavior. Consequently, the remainder of this release note provides a
detailed explanation of how the behavior works.

As with the conditional input branch behavior available in the previous
release, the new behavior ensures that the block methods that make up an
input branch of a Switch or Multiport Switch block execute only when the
model selects the corresponding switch input. In addition, the new behavior
option generalizes this behavior to conditionally executed subsystems.
Consider, for example, the following model.

Simulink software computes the outputs of the Constant block and Gain
Block only when the Enabled Subsystem executes (i.e., at time steps 0, 4,
8, and so on). This is because the output of the Constant block is required
and the input of the Gain block changes only when the Enabled Subsystem
executes. When CE behavior is off, Simulink software computes the outputs
of the Constant and Gain blocks at every time step, regardless of whether
the outputs are needed or change.

In this example, Simulink software regards the Enabled Subsystem as
defining an execution context for the Constant and Gain blocks. Although the
blocks reside in the model’s root system, their block methods are executed as
if the blocks reside in the Enabled Subsystem.

In general, Simulink software defines an execution context as a set of blocks
to be executed as a unit. At model compilation time, Simulink software
associates an execution context with the model’s root system and with each of

328

Version 5.1 (R13SP1) Simulink® Software

its nonvirtual subsystems. Initially, the execution context of the root system
and each nonvirtual subsystem is simply the blocks that it contains. Simulink
software examines whether a block’s output is required only by a conditionally
executed subsystem or whether the block’s input changes only as a result
of the execution of a conditionally executed subsystem. If so, Simulink
software moves the block into the execution context of the conditionally
executed system. This ensures that the block methods are executed during
the simulation loop only when the corresponding conditionally executed
subsystem executes.

Note This behavior treats the input branches of a Switch or Multiport Switch
block as invisible, conditionally executed subsystems, each of which has its
own execution context that is enabled only when the switch’s control input
selects the corresponding data input. As a result, switch branches execute
only when selected by switch control inputs.

To determine the execution context to which a block belongs, select Sorted
order from the model window’s Format menu. Simulink software displays
the sorted order index for each block in the model in the upper right corner
of its icon. The index has the format s:b, where s specifies the subsystem to
whose execution context the block, b, belongs.

Simulink software also expands the sorted order index of conditionally
executed subsystems to include the system ID of the subsystem itself in curly
brackets as illustrated in the following figure.

329

Simulink® Release Notes

In this example, the sorted order index of the enabled subsystem is 0:1{1}.
The 0 indicates that the enable subsystem resides in the model’s root system.
The first 1 indicates that the enabled subsystem is the second block on
the root system’s sorted list (zero-based indexing). The 1 in curly brackets
indicates that the system index of the enabled subsystem itself is 1. Thus any
block whose system index is 1 belongs to the execution context of the enabled
subsystem and hence executes when it does. For example, the constant block’s
index, 1:0, indicates that it is the first block on the sorted list of the enabled
subsystem, even though it resides in the root system.

Function-Call Subsystem Enhancements
This releases adds the following function-call subsystem-related parameters
to the Trigger block:

• The States when enabling parameter specifies whether a function-call
enable trigger causes Simulink software to reset the states of the subsystem
containing this Trigger block to their initial values.

• The Sample time type parameter specifies whether the function-call
subsystem containing the Trigger block is invoked periodically.

• The Sample time parameter species the rate at which the function-call
subsystem containing the Trigger block is invoked.

See the Trigger block documentation for additional information.

External Increment Option Added To For Iterator
Block
This release adds an external increment option to the For Iterator block.
Selecting this option causes the block to display an input port for the external
increment. The value of this input port at the current time step is used as
the value of the block’s iteration variable at the next iteration. You can select
this option by checking the Set next i (iteration variable) externally option
on the block’s parameter dialog box or by setting its ExternalIncrement
parameter to 'on'. See the documentation for the For Iterator block for more
information.

330

Version 5.1 (R13SP1) Simulink® Software

Note This enhancement is not backward compatible with R13. Loading
models containing For Iterator blocks with this option selected in R13
produces a warning message. Simulating such models in R13 can produce
incorrect results.

Performance Improvements
Release R13SP1 includes many performance improvements that were
designed to particularly benefit large models (containing on the order of
100,000 blocks and/or more than a few megabytes of parameter data). Speed
has been improved and memory consumption reduced for model loading,
compilation, code generation, and closing. The various improvements span
the Simulink, Stateflow, and Real-Time Workshop products and include:

• Increased speed and decreased memory consumption through improved
incremental loading of library blocks that contain Stateflow blocks.

• Increased speed and decreased memory usage through the introduction of a
redesigned Signal Specification block. Models saved with the old version
of the Signal Specification block should automatically start using the new
block when you load the model with this release.

• Increased speed in datatype and sample time propagation during the
compile phase of certain models.

• Increased speed in the Stateflow build process for both simulation and
Real-Time Workshop targets.

• Increased speed and decreased memory consumption when using N-D
Lookup Table blocks that utilize large parameter data.

• Increased speed and decreased memory usage when generating code with
Real-Time Workshop software or Simulink Accelerator for models with
large parameter sets. This improvement involves writing out parameter
references instead of the entire parameter data into the Real-Time
Workshop file for parameters whose size exceeds 10 elements. The
parameter values for such references are retrieved directly from Simulink
software during the code generation process.

• Decreased memory usage during various phases of code generation process
in Real-Time Workshop software or Simulink Accelerator.

331

Simulink® Release Notes

• Improved speed during model close through streamlining of the close
process.

Other minor improvements have also been made to improve performance.
Your models should experience corresponding speed and memory
improvements, to the extent that these changes apply to your specific models
and usage scenarios.

332

Version 5.0.1 (R13.0.1) Simulink® Software

Version 5.0.1 (R13.0.1) Simulink Software
This table summarizes what’s new in V5.0.1 (R13.0.1):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Fixed Bugs

New features and changes introduced in this version are

Tunable Parameters for Unified Fixed-Point Blocks

Compatibility Considerations
Unified fixed-point blocks with tunable parameters have compatibility
problems under certain conditions in Release 13. The problem arises only if
a tunable parameter is mapped to a built-in integer or single data type.
When tunable parameters are mapped to built-in integers or single, the
code generated by Real Time Workshop will be different for unified blocks
than it was for Fixed-Point Blockset blocks in prior releases. There are no
compatibility problems if a tunable parameter maps to a nonbuilt-in data
type, such as a scaled fixed-point integer.

Tunable parameters are entered in a Simulink model by specifying the name
of a MATLAB variable in a block’s dialog. This variable can be either a plain
MATLAB variable or a Simulink parameter object. In either case, a numerical
value will be defined for this tunable parameter by doing an assignment in
MATLAB. MATLAB supports several numerical data types including the
eight Simulink built-in numerical data types: double, single, int8, uint8,
int16, uint16, int32, and uint32. One of these eight data types can be used
when a value is defined for a MATLAB variable. The effect of the data type of
the MATLAB variable is significantly different depending on how the tunable
parameter is used in Simulink software.

333

../../../bugfixes_13plus.html#Simulink

Simulink® Release Notes

For Simulink built-in blocks, the legacy rule is to fully respect the data type
used for the value of a MATLAB variable. Whatever data type is used in
MATLAB when assigning a value to a variable is also be used when declaring
that parameter in code generated by Real-Time Workshop software. The
use of that parameter by a block may require the value to be represented
using a different data type. If so, additional code is generated to convert the
parameter every time it is used by the block. To get the most efficient code
for a given block, the value of the MATLAB variable should use the same
data type as is needed by the block.

For Fixed-Point Blockset blocks, the legacy rule is to expect no data type
information from the MATLAB variable used for the tunable parameter.
A fundamental reason for this is that the MATLAB product does not have
native support for fixed-point data types and scaling, so the Simulink built-in
legacy rule could not be directly extended to the general fixed-point case.
Many fixed-point blocks automatically determine the data type and scaling
for parameters based on what leads to the most efficient implementation of a
given block. However, certain blocks such as Constant, as well as blocks that
use tunable parameters in multiplication, do not imply a unique best choice
for the data type and scaling of the parameter. These blocks have provided
separate parameters on their dialogs for entering this information.

In Release 13, many Simulink built-in blocks and Fixed-Point Blockset
blocks were unified. The Saturation block is an example of a unified block.
The Saturation block appears in both the Simulink Library and in the
Fixed-Point Blockset Library, but regardless of where it appears it has
identical behavior. This identical unified behavior includes the treatment
of tunable parameters. The dissimilarity of the legacy rules for tunable
parameters has lead to a shortcoming in the unified blocks. Unified blocks
obey the Simulink legacy rule sometimes and the Fixed-Point Blockset legacy
rule at other times. If the block is using the parameter with built-in Simulink
data types, then the Simulink legacy rule applies. If the block is using the
parameter with nonbuilt-in data types, such as scaled fixed-point data types,
then the Fixed-Point Blockset legacy rule applies. This gives full backwards
compatibility with one important exception.

The backwards compatibility issue arises when a model created prior to
R13 uses a Fixed-Point Blockset block with a tunable parameter, and the
data type used by the block happens to be a built-in data type. If the block
is unified, it will now handle the parameter using the Simulink legacy rule

334

Version 5.0.1 (R13.0.1) Simulink® Software

rather than the Fixed-Point Blockset legacy rule. This can have a significant
impact. For example, suppose the tunable parameter is used in a Saturation
block and the data type of the input signal is a built-in int16. In prior
releases, the Fixed-Point Blockset block would have declared the parameter
as an int16. For legacy fixed-point models, the MATLAB variables used for
tunable parameters invariably gave their value using floating-point double.
The unified Saturation block would now declare the tunable parameter in the
generated code as double. This has several negatives. The variable takes up
six more bytes of memory as a double than as an int16. The code for the
Saturation block now includes conversions from double to int16 that execute
every time the block executes. This increases code size and slows down
execution. If the design was intended for use on a fixed-point processor, the
use of floating-point variables and floating-point conversion code is likely to
be unacceptable. It should be noted that the numerical behavior of the blocks
is not changed even though the generated code is different.

For an individual block, the backwards compatibility issue is easily solved.
The solution involves understanding that the Simulink legacy rule is being
applied. The Simulink legacy rule preserves the data type used when
assigning the value to the MATLAB variable. The problem is that an
undesired data type will be used in the generated code. To solve this, you
should change the way you assign the value of the tunable parameter.
Determine what data type is desired in the generated code, then use an
explicit type cast when assigning the value in MATLAB. For example, if int16
is desired in the generated code and the initial value is 3, then assign the
value in MATLAB as int16(3). The generated code will now be as desired.

A preliminary step to solving this issue with tunable parameters is identifying
which blocks are affected. In most cases, the treatment of the parameter will
involve a downcast from double to a smaller data type. On the Diagnostics
tab of the Simulation Parameters dialog is a line item called Parameter
downcast. Setting this item to Warning or None will help identify the blocks
whose tunable parameters require reassignment of their variables.

In R13, the solution described above did not work for three unified blocks:
Switch, Look-Up Table, and Lookup Table (2-D). These blocks caused errors
when the value of a tunable parameter was specified using integer data types.
This was a false error and has been removed. Using an explicit type cast when
assigning a value to the MATLAB variable now solves the issue of generating
code with the desired data types.

335

Simulink® Release Notes

Version 5.0 (R13) Simulink Software
This table summarizes what’s new in V5.0 (R13):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Fixed Bugs

New features and changes introduced in this version are organized by these
topics:

• “Block Enhancements” on page 336

• “Simulation Enhancements” on page 341

• “Modeling Enhancements” on page 343

• “Platform Limitations for HP and IBM” on page 345

Note Simulink 5.0 incorporates changes introduced in Simulink 4.1.1, which
was initially released in Web-downloadable form after Release 12.1 was
released, but before Release 13. These Release Notes describe those changes,
as well as other changes introduced after Version 4.1.1.

Block Enhancements
Simulink 5.0 includes the following block-related enhancements:

• “Fixed-Point Block Library” on page 337

• “Lookup Table Editor” on page 338

• “Model Verification Block Library” on page 338

• “Signal Builder Block” on page 338

• “DocBlock” on page 339

336

../../../bugfixes_13.html#Simulink

Version 5.0 (R13) Simulink® Software

• “Rate Transition Block” on page 339

• “Block Library Reorganization” on page 339

• “Model Linearization Blocks” on page 339

• “Data Store Read/Write Block Navigation” on page 339

• “Enhanced S-Function Builder” on page 339

• “Miscellaneous Block Enhancements” on page 340

Fixed-Point Block Library
Simulink software now includes the latest version (4.0) of the Fixed-Point
Blockset. The library was previously available only as a separately installed
option. You must have a Fixed-Point Blockset license to run models
containing fixed-point blocks in fixed-point mode. However, you can open,
edit, and run such models in floating-point mode, regardless of whether
you have a Fixed-Point Blockset license. This change facilitates sharing of
fixed-point models in large organizations by eliminating the need for all users
in a group to have a Fixed-Point Blockset license in order to run or modify
models containing fixed-point blocks. See “Installation and Licensing” in the
Simulink Fixed-Point Blockset release notes for information on how to run
models containing fixed-point blocks when you do not have a Fixed-Point
Blockset license.

This release also unifies many core Simulink and Fixed-Point Blockset blocks
that have similar functionality. For example, the Sum block in the Simulink
Math Operations library and the Sum block in the Fixed-Point Blockset Math
library are now the same block. As a result, you no longer have to replace any
of the unified blocks when switching from built-in to fixed-point data types and
vice versa. You can change the data types of the blocks simply by selecting the
appropriate settings on their parameter dialog boxes. See “Unified Simulink
and Fixed-Point Blockset Blocks” in the Simulink Fixed-Point Blockset release
notes for more information and for a list of blocks that this release unifies.

337

Simulink® Release Notes

Note When you open an existing model, Simulink 5.0 updates the model to
use the unified version of a standard or Fixed-Point Blockset block wherever
an instance of that block occurs in the model. Simulink software sets the
parameters of the unified block to preserve the behavior of the original block.
For example, wherever your existing model contains a Sum block from the
Fixed-Point Blockset library, Simulink software replaces the Fixed-Point
Blockset version with a unified Sum block set to operate as a fixed-point block.
This automatic updating ensures that your existing model runs the same in
Simulink 5.0 as it did in previous releases of Simulink software.

Lookup Table Editor
The Lookup Table Editor allows you to find and edit the contents of look-up
tables used by look-up table blocks. See “Lookup Table Editor” in the online
Simulink documentation for more information.

Model Verification Block Library
Simulink software now includes a library of model verification blocks that
enable you to create self-validating models. For example, you can use the
blocks to test that signals do not exceed specified limits during simulation.
When you are satisfied that a model is correct, you can turn error-checking
off by disabling the model verification blocks. You do not have to physically
remove them from the model. The library includes set of blocks preconfigured
to check for common types of errors, for example, signals that exceed a
specified upper or lower bound. See “Model Verification” in the online
Simulink documentation for more information.

Signal Builder Block
The new Signal Builder block allows you to create interchangeable groups of
signal sources and quickly switch the groups into and out of a model. The
Signal Builder block’s signal editor allows you to define the waveforms of the
signals output by the block. You can specify any waveform that is piecewise
linear. Signal groups can greatly facilitate testing a model, especially when
used in conjunction with Simulink assertion blocks and the optional Model
Coverage Tool. See “Working with Signal Groups” for more information.

338

Version 5.0 (R13) Simulink® Software

DocBlock
The new DocBlock block allows you to create text that documents a model
and save that text with the model.

Rate Transition Block
Simulink software now includes a Rate Transition block that allows you
to specify the data transfer mechanism between two rates of a multirate
system. See Rate Transition in the online Simulink block reference for more
information.

Block Library Reorganization
The Simulink Block Library has been reorganized to simplify accessing blocks
with related functionality.

Model Linearization Blocks
This release introduces two blocks that generate linear models from a
Simulink model at various times during a simulation. The Timed-Based
Linearization block generates linear models at specified time steps. The
Trigger-Based Linearization block generates models when triggered by events
appearing at its trigger port.

Data Store Read/Write Block Navigation
This release allows you to navigate among the blocks that define and access
data stores by clicking on the names of associated blocks listed in the dialog
box of each block. See Data Store Memory, Data Store Read, and Data Store
Write for more information.

Enhanced S-Function Builder
The S-Function Builder has been enhanced to generate S-functions with the
following additional capabilities

• Multiple ports

• Support for all builtin datatypes

• Support for 2-D signals

339

Simulink® Release Notes

• Support for complex signals

See “Building S-Functions Automatically” for more information.

Miscellaneous Block Enhancements
This release introduces the following enhancements to Simulink blocks.

Math Function Block. This release significantly speeds up the simulation
of the Math Function block’s exponential math functions. All functions now
support both double- and single-precision floating-point inputs and outputs.
The mod and rem functions also support inputs and outputs of all integer
types. The transpose and hermitian functions support all data types. When
optimizations are enabled, the conjugate operation on a real signal invokes
the block reduction optimization, as that case is a no-op. In-place multiplies
for the magnitude^2 operation are used for reused block I/O on real signals.

Gain Block. The Gain block now performs block reduction when block
reduction is on, inline parameters=ON, and the gain is both nontunable
and unity.

Width Block. The Width block now includes a parameter to specify the
datatype of the output.

Real Data Type Support. The following blocks now operate on both double
precision and single precision floating point signals:

• Dot Product

• Trigonometric

• Matrix Inversion

Block Data Type Table
To view a table that summarizes the data types supported by the blocks in the
Simulink and Fixed-Point block libraries, execute the following command at
the MATLAB command line:

showblockdatatypetable

340

Version 5.0 (R13) Simulink® Software

Simulation Enhancements
Simulink 5.0 includes the following new features and enhancements to
simulation of Simulink models.

• “Invalid Loop Highlighting” on page 341

• “Algebraic Loop Highlighting” on page 341

• “Conditional Execution Behavior” on page 341

• “Reorganized Simulation Diagnostics” on page 342

• “Enhanced Diagnostic Viewer” on page 342

Invalid Loop Highlighting
Simulink software now detects and highlights several kinds of invalid loops:

• Loops that create invalid function-call connections or an attempt to modify
the input/output arguments of a function call

• Loops containing non-latched triggered subsystems

• Self-triggering subsystems

• Loops containing action subsystems in a cycle

This makes it is easier to identify and fix the loop. See “Avoiding Invalid
Loops” for more information.

Algebraic Loop Highlighting
Simulink software now optionally highlights algebraic loops when you update
or simulate a model. See “Highlighting Algebraic Loops Using the Algebraic
Loop Diagnostic” for more information. The ashow debug command without
any arguments now lists all of a model’s algebraic loops in the MATLAB
command window.

Conditional Execution Behavior
This release introduces a new optimization called conditional execution
behavior. Previously, when simulating models containing Switch or Multiport
Switch blocks, Simulink software executed all blocks required to compute all
inputs to each switch at each time step. In this release, Simulink software, by

341

Simulink® Release Notes

default, executes only the blocks required to compute the control input and
the data input selected by the control input at each time step. Similarly, code
generated from the model by Real-Time Workshop software executes only the
code needed to compute the control input and the selected data input. This
optimization speeds simulation and execution of code generated from the
model. See “Conditional Execution Behavior” for more information.

Reorganized Simulation Diagnostics
The Diagnostics Pane of the Simulation Parameters dialog box now
groups diagnostics by functionality. This makes it easier to find and configure
related diagnostics.

Enhanced Diagnostic Viewer
This release introduces an enhanced Diagnostic Viewer. Improvements
include

• Identical appearance on UNIX® and Windows systems

• Hyperlinks to Simulink, Stateflow, and Real-Time Workshop objects that
caused the errors displayed in the viewer

• Sortable error list

Clicking a column head sorts the error list by the contents of that column.

• Configurable content

The View menu allows you to choose which information to display in the
viewer.

• Selectable font size

The FontSize menu allows you to choose the size of the font used to
display error messages.

See “Simulation Diagnostics Viewer” for more information.

Compatibility Considerations. New version of the Diagnostic Viewer is not
supported on the HP and IBM® platforms.

342

Version 5.0 (R13) Simulink® Software

Modeling Enhancements
The following enhancements facilitate creation of Simulink models.

• “Enhanced Mask Editor” on page 343

• “Production Hardware Characteristics” on page 344

• “Including Symbols and Greek Letters in Block Diagrams” on page 344

• “True Color Support” on page 344

• “Print Details” on page 344

• “Boolean Logic Signals” on page 344

• “Model Discretizer” on page 344

Enhanced Mask Editor
This release introduces changes to the Mask Editor designed to improve
usability. Changes include

• Block parameter information moves from the Initialization pane to a new
pane entitled Parameters.

• The Parameters pane allows you to specify a callback function to be called
when the value of a parameter changes.

• The Parameters pane allows you to specify via check boxes whether
a parameter is visible on the masked block’s dialog box and whether a
parameter is tunable.

• The Icon pane provides a list of examples of all the types of drawing
commands that can be used to draw the block’s icon.

See “Working with Block Masks” in the online Simulink documentation for
more information.

Compatibility Considerations.

• Simulink Editor’s Find dialog is not supported on the HP and IBM
platforms. Use the find_system command instead.

• Enhanced version of Mask Editor is not supported on the HP and IBM
platforms.

343

Simulink® Release Notes

Including Symbols and Greek Letters in Block Diagrams
This release allows you to include symbols, Greek letters, and other
formatting in annotations, masked subsystem port labels, and masked
subsystem icon text. You do this by including TeX formatting commands in
the annotation, port label, or icon text.

Production Hardware Characteristics
Production hardware characteristics is a new setting on the Advanced
pane of the Simulation parameters dialog box. This setting, intended for
use in modeling, simulating, and generating code for digital systems, allows
you to specify the sizes of the data types supported by the system being
modeled. Simulink software uses this information to automate the choice of
data types for signals output by some blocks.

True Color Support
This release allows you to use any color supported by your system as the
foreground or background colors of a block diagram. See “Specifying Block
Diagram Colors” in the online documentation for more information.

Print Details
This command generates an HTML report detailing the contents of the
currently selected model (see “Generating a Model Report” in the online
documentation for more information).

Boolean Logic Signals
In previous releases, the Boolean logic signals optimization was off by
default for new models (see “Implement logic signals as Boolean data (vs.
double)” in the online Simulink documentation for a description of this
option). In the current release, the optimization is on by default for new
models. This change does not affect existing models.

Model Discretizer
The Model Discretizer tool selectively replaces continuous Simulink blocks
with discrete equivalents. Discretization is critical in digital controller design
for dynamic systems and for hardware in the loop simulations. You can use
this tool to prepare continuous models for use with the Real-Time Workshop

344

Version 5.0 (R13) Simulink® Software

Embedded Coder software, which supports only discrete blocks. See “Model
Discretizer” in the online documentation for more information.

Platform Limitations for HP and IBM
The following are platform limitations for Simulink 5.0 for the HP and IBM
platforms that are new limitations, as of Version 5.0.

• The Parameter dialog for the Configuration Subsystem Block is not
supported on the HP and IBM platforms. Instead, use the set_param
command to set the block’s parameters.

• The View Changes dialog box for modified library links is not supported
on the HP and IBM platforms. Instead, select the modified link and
execute ld=get_param(gcb,'LinkData') to get a structure that lists the
parameter differences between the library and local instance of the block.
Edit this structure and execute set_param(gcb,'LinkData',ld) to apply
the changes.

• The GUI interface to the Simulink Debugger is not supported on the HP
and IBM platforms. Use the command-line interface instead.

• Model Discretizer is not supported on the HP and IBM platforms.

Note The Release 12 and 12.1 platform limitations for Simulink software for
the HP and IBM platforms still apply to Release 13. These are listed below.

The following Java-dependent Simulink features, introduced in Simulink 4.1,
are not available on the HP and IBM platforms.

• Simulink Data Class Designer

• S-Function Builder

• Look-Up Table Editor

345

Simulink® Release Notes

Version 4.1 (R12+) Simulink Software
This table summarizes what’s new in V4.1 (R12+):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Fixed Bugs

New features and changes introduced in this version are organized by these
topics:

• “Simulink Editor” on page 346

• “Modeling Enhancements” on page 348

• “Simulink Debugger” on page 351

• “Block Library” on page 352

• “Triggered Subsystems” on page 354

• “Running Simulink 4.1 Models in Simulink 4.0 Software” on page 355

• “Direct Feedthrough Compensation Deprecated” on page 356

• “Improved Invalid Model Configuration Diagnostics” on page 356

• “Bug Fixes” on page 357

Simulink Editor
This section describes enhancements to the Simulink Editor.

Undo Move
In Simulink 4.1, the Undo command on the Simulink Edit menu restores
blocks, annotations, lines, and nodes that have moved to their original
locations (see “Undoing a Command” in the Simulink documentation).

346

Version 4.1 (R12+) Simulink® Software

Undo Subsystem Creation
In Simulink 4.1, the Undo command on the Simulink Edit menu restores
blocks that have been grouped into a subsystem to their original level in the
model (see “Undoing Subsystem Creation” in the Simulink documentation).

Autoconnecting Blocks
This version makes connecting blocks significantly easier. To connect a set of
source blocks to a target block, simply select the source blocks, hold down the
Ctrl key and left-click the target block. Simulink software draws connecting
lines between the source blocks and the destination block, neatly routing lines
around intervening blocks. To connect a source block to a set of target blocks,
select the target blocks, hold down the Ctrl key and left--click the source block.
To connect two blocks, select the source block, and left-click the destination
block while holding down the Ctrl key. Simulink software connects as many
ports on the two blocks as possible (see “Connecting Blocks”).

Autorouting Signal Lines
Simulink software now routes signal lines around intervening blocks when
you connect them either interactively (by dragging the connecting lines or
using autoconnect) or programmatically via the add_line command’s new
'autorouting' option (see “Autorouting Option Added to add_line Command”
on page 348).

Displaying Storage Class on Lines
This version adds an item to the Format menu, which toggles the display of
(nonAuto) storage class on signal lines.

Save Models in Release 11 Format
This release can save post-Release 11 models in Release 11 format. Simulink
3 (Release 11) can load and run converted models that do not use any
post-Release 11 features of Simulink. Simulink 3 can load converted models
that use post-Release 11 features but may not be able to simulate the model
correctly. Use the Save as option from the Simulink File menu or the
following command to save a model in Release 11 format.

slsaveas(SYS)

347

Simulink® Release Notes

Modeling Enhancements
This section describes enhancements to Simulink dynamic system modeling
tools.

Autorouting Option Added to add_line Command
The add_line command now optionally routes lines around intervening
blocks and annotations. For example, the following command autoroutes a
connection between two blocks in the vdp model.

add_line('vdp','Product/1','Mu/1','autorouting','on')

The autorouting option is off by default. See add_line in the Simulink
documentation for more information.

S-Function Builder
The S-Function Builder generates an S-function from specifications that you
enter in a dialog box. It provides an easy way for you to incorporate existing
code into a Simulink model.

add_param, delete_param
With this version, you can add custom parameters to your block diagrams.

add_param('modelname','MyParameterName','value')
delete_param('modelname','MyParameterName')

You can also use the model handle in place of the model name. See add_param
and delete_param in the Simulink documentation for more information.

Connection Callbacks
With this version, you can use set_param to set callbacks on ports that
are triggered by changes in the ports’ connectivity. The callback function
parameter is named ConnectionCallback. When the port’s connectivity
changes (addition/deletion of line connected to the port, connection of new
block to the port, etc.), Simulink software invokes the callback function with
the port handle as its argument. See “Port Callback Parameters” for more
information.

348

Version 4.1 (R12+) Simulink® Software

Saving Block User Data in Model Files
This version adds a new block parameter, named UserDataPersistent, that
is off by default. Setting this parameter on, e.g.,

set_param(block-name,'UserDataPersistent','on')

causes Simulink software to include a block’s user data (i.e., the value
of the block’s UserData parameter) in the model file when you save a
model. Simulink software encodes the user data as ASCII characters and
saves the encoded data in a new section of the model file called MatData.
This mechanism works with all forms of MATLAB data, including arrays,
structures, objects, and Simulink data objects. See “Associating User Data
with Blocks” for more information.

Absolute Tolerance Enhancements
This version adds a dialog item for setting the absolute tolerance for each
state in the State-Space block, the Transfer Fcn block, and the Zero-Pole
block. With this enhancement, you can now specify the absolute tolerance for
solving every continuous state in your model.

Block Reduction Enhancements
S-functions may now request that they be eliminated from the compiled
model. To do this, call ssSetBlockReduction (true) inside the S-function.
This is an advanced feature provided for customers writing S-functions who
want to optimize the generated code produced for their S-function. Graphical
connectivity is now remapped during block reduction, eliminating a source
of error during reduction (e.g., a memory reference error used to occur if
Simulink software eliminated a block connected to a scope). Block reduction is
now on by default, and a Simulink preference has been added for the option.

Boolean Logic Signals Preference
The Simulink Preferences dialog box now allows you to specify the use of
Boolean logic signals by default. See “Implement logic signals as Boolean data
(vs. double)” in the Simulink documentation for more information.

349

Simulink® Release Notes

Subsystem Semantics Demos
Typing sl_subsys_semantics at the MATLAB prompt now displays a set of
models that illustrate the semantics of various types of subsystem blocks. The
demos include formal definitions of function-call subsystems.

Enhanced Engine Model Demos
The top and bottom dead center detection in the engine and enginewc demo
models now use a reset integrator. In previous versions, the models used
a triggered subsystem to detect angular position. This method resulted in
inefficiencies and a slower, less accurate solution. In addition, self-triggering
subsystems are now illegal in Simulink software.

Setting Block Sorting Priority on Virtual Subsystems
In Simulink 4.0, it was an error to specify a priority on a virtual subsystem.
In Simulink 4.1, you can specify priorities on virtual subsystems.

Using ~ in Filenames on UNIX
Now all filename fields in Simulink software support the mapping of
the ~ character in filenames. For example, in a To File block, you can
specify ~/outdir/file.mat. On most systems, this will expand to
/home/$USER/outdir/file.mat.

Improved Warning About Slow Signals Feeding the Enable
Port of an Enabled Subsystem Containing Fast Blocks
In a multitasking environment, deterministic results cannot be guaranteed
if a slow signal feeds the enable port of an enabled subsystem that contains
fast blocks. In previous versions, Simulink software did not issue a warning
in some cases where this may occur.

Flagging Function-Call Subsystem Cycles
In previous versions, Simulink software allowed you to build models
containing function-call-cycles, i.e., function-call subsystems that directly
or indirectly call themselves.

350

Version 4.1 (R12+) Simulink® Software

Such models cannot be correctly simulated. Accordingly, Simulink software
now displays an error message when you attempt to run or update a diagram
containing function-call cycles.

Simulink Debugger
This section describes enhancements to the Simulink debugger.

Enhancement to Sorted List Display
The Simulink debugger (sldebug) sorted list command, slist, now displays
the names of the S-functions residing inside S-function blocks.

Improved Messages in Accelerated Mode
The trace, break, zcbreak, nanbreak, and minor commands now indicate
that they are disabled when in accelerator mode and you need to switch to
normal mode to activate them. The spacing of several messages has been
fixed so the text aligns correctly.

Breakpoints on a Function-Call Subsystem
You can now put a break point on a function-call subsystem. Simulink
software breaks when the subsystem is executed. In Release 12, entering
the quit command while at a breakpoint within a function-call subsystem
wouldn’t always quit the debugger. Now the quit command ends the
debugging session once the initiating (calling) Stateflow chart or S-function
finishes executing its time step.

351

Simulink® Release Notes

Displaying and Probing Virtual Blocks
The display and probe commands now work for virtual blocks.

Stepping Stateflow Charts
You can now step execution of a model into a Stateflow chart.

Block Library
This section describes enhancements to the Simulink block libraries.

Unified Pulse Generator
This version merges the Discrete Pulse Generator block into the Pulse
Generator block. The combined block has two modes: time-based and
sample-based (discrete). Time-based mode varies the step size when a
variable step solver is being used to ensure that simulation steps occur at
pulse on/off transitions. When a fixed step solver is used, the time-based mode
computes a fixed step size that ensures that a simulation step occurs at every
pulse transition. The Pulse Generator block also outputs a pulse of any real
data type in sample-based as well as time-based mode.

Control Flow Blocks
Simulink 4.1 adds an If block and Switch Case block that can drive
conditionally executed subsystems that contain instances of the new Action
Port block. Action subsystems are similar to enabled subsystems, except that
all blocks must run at the same rate as the If or Switch Case block.

This version also adds a For Iterator block and a While Iterator block. When
placed in a subsystem, these blocks cause all of the blocks in the system to
run multiple cycles during a time step. The block cycle in a For Iterator
subsystem runs a specified number of times. The block cycle in a While
Iterator subsystem runs until a specified condition is false. A user can limit
execution of a While Iterator subsystem to a specified number of iterations
to avoid infinite loops.

The new Assignment block allows a model to assign values to specified
elements of a signal.

352

Version 4.1 (R12+) Simulink® Software

Bus Creator
Simulink 4.1 adds a Bus Creator block that combines the output of multiple
blocks into a single signal bus. A model can use the existing Signal Selector
block to extract signals from the bus. The block’s dialog box allows you to
assign names to signals on the bus or allow the signals to inherit their names
from their sources. When you double-click on a signal name in the block
dialog, the source block is highlighted. There is no execution overhead in the
use of bus creator/bus selector blocks.

Sine Wave Block Enhancements
The Sine Wave block now supports a bias factor that eliminates the
need to sum with a Constant block. The Sine Wave block also has a new
computational mode. This mode (called sample-based) eliminates the
dependence on absolute time.

Enhanced Flip-Flop Blocks
Simulink Extras (simulink_extras.mdl) contains a set flip-flop blocks. These
blocks now use the new triggered subsystem latching semantics. In addition,
the S-R Flip-Flop block now models a physical NOR gate (i.e., S=1, R=1 => Q=0,
Q!=0, the undefined state).

Additional Data Type Support
The Discrete-Time Integrator and Rounding Function blocks now handle
single as well as double values. The Transport Delay, Unit Delay, Variable
Transport Delay, Memory, Merge, and Outport blocks can specify nonzero
initial conditions when operating on fixed-point signals.

Simulink Block Library Reorganization
The Simulink Block Library contains a new Subsystems sublibrary. The new
library contains most of the new control flow blocks as well as subsystem
and subsystem-related blocks that used to reside in the Signals & Systems
library. The subsystems in the new library each contain the minimum set of
blocks needed to create a functioning subsystem, e.g., an input port and an
output port.

353

Simulink® Release Notes

Compatibility Considerations. The Simulink Block Library contains a new
Subsystems sublibrary. The new library contains most of the new control flow
blocks as well as subsystem and subsystem-related blocks that used to reside
in the Signals & Systems library. The subsystems in the new library each
contain the minimum set of blocks needed to create a functioning subsystem,
e.g., an input port and an output port.

Scope Enhancements
The Scope block includes the following enhancements:

• A floating version of the Scope added to the Sinks block library

• Floating Scope saves the signals selected for display in the model file

• The Scope’s toolbar buttons for toggling between floating/nonfloating mode,
restoring saved axes, locking/unlocking axes, and displaying the Signal
Selector

S-Functions Sorted Like Built-In Blocks

Compatibility Considerations. When sorting blocks, Simulink software
now treats S-function blocks the way it treats built-in blocks. This means
that S-functions now work correctly in nonvirtual subsystems when there
is a direct feedback connection (in Simulink 4.0 and prior, this wasn’t the
case). It also means that models compile (update diagram) faster. As a side
effect, the execution order for S-functions that incorrectly set the direct
feedthrough flag differs from that used in previous versions of Simulink
software. Consequently, models that contain invalid S-functions may produce
different answers in this version of Simulink software.

Triggered Subsystems
This section describes features and changes to the Simulink triggered
subsystems.

Added Latched Triggered Subsystems
Now triggered subsystems enable you to implement software triggering,
hardware triggering, or a combination of the two. Software triggering is
defined as

354

Version 4.1 (R12+) Simulink® Software

if (trigger_signal_edge_detected) {
out(t) = f(in(t));

}

Hardware triggering is defined as

if (trigger_signal_edge_detected) {
out(t) = f(in(t-h)); // h == last step size

}

Compatibility Considerations. Previous to this version, triggered
subsystems provided software triggering and a form of hardware triggering
when a cycle involving triggered subsystems existed. Now, you must explicitly
specify whether or not you’d like software or hardware triggering. This
is done by selecting 'Latch (buffer) input' on the Inport blocks in a
triggered subsystem.

Each input port of a triggered subsystem configures whether or not the
input should be latched. A latched input provides the hardware-triggering
semantics for that input port. Type sl_subsys_semantics at the MATLAB
prompt for more information.

Self-Triggering Subsystems Are No Longer Allowed

Compatibility Considerations. Before this version, you could define the
output of a triggered subsystem to directly feed back into the trigger port
of the subsystem (with potentially other additive signals). This resulted in
an implicit delay. Now you must explicitly define the delay by inserting
a memory block.

Running Simulink 4.1 Models in Simulink 4.0
Software
Simulink 4.0 can run models created or saved by Simulink 4.1, with the
provisions outlined in the following.

355

Simulink® Release Notes

Compatibility Considerations
Simulink 4.0 can run models created or saved by Simulink 4.1 as long as the
models do not use features introduced in the new version, including new
block types and block parameters. In particular, you should not attempt to
use Simulink 4.0 to simulate or even open models that use the new Simulink
control flow blocks. Opening such models cause Simulink 4.0 to crash.

Direct Feedthrough Compensation Deprecated
If an S-function needs the current value of its input to compute its output, it
must set its direct feedthrough flag to true.

Compatibility Considerations
Previously, if a direct feedthrough S-function failed to do this, Simulink
software tried to provide a valid signal to the S-function’s mdlOutputs
(M-file flag=3) or mdlGetTimeOfNextVarHit (M-file flag=4) methods. This
special compensation mode for S-functions was flawed. For this reason,
the current version deprecates the mode, though making it available
as an option. In this version, by default, if an S-function sets its direct
feedthrough flag to false during initialization, Simulink software sets the
S-function’s input signal to NULL (or a NaN signal for M-file S-functions)
during the mdlOutputs or mdlGetTimeOfNextVarHit methods. Thus, in this
version, models with S-function(s) may produce segmentation violations.
See matlabroot/simulink/src/sfuntmpl_directfeed.txt for more
information.

Improved Invalid Model Configuration Diagnostics
This version of Simulink software does a better job of detecting and flagging
invalid modeling constructs in Simulink models. The changes include:

• Direct feedthrough compensation no longer occurs by default for S-functions
(see “Direct Feedthrough Compensation Deprecated” on page 356).

• S-functions are now sorted like built-in blocks (see “S-Functions Sorted
Like Built-In Blocks” on page 354).

• Simulink software no longer inserts implicit latches in triggered subsystems
that directly or indirectly trigger themselves (see “Self-Triggering
Subsystems Are No Longer Allowed” on page 355, above). Instead it signals

356

Version 4.1 (R12+) Simulink® Software

an error when it detects a triggered subsystem loop with unlatched inputs.
To avoid the error, you must select the Latch option on the triggered
subsystem’s input ports.

• Simulink software now signals an error when it detects invalid
configurations of function-call subsystems. See the Subsystem Examples
block in the Subsystems library for examples of illegal modeling constructs
involving function-call subsystems. You can disable this diagnostic by
setting the Invalid FcnCall Connection parameter on the Diagnostics
pane of the Simulation Parameters dialog box to none or warning.

Compatibility Considerations
Consequently models that ran in previous versions of Simulink software
(sometimes producing incorrect results) may not run in the current release.

Bug Fixes
This section lists fixes to bugs that occurred in the previous version of
Simulink software.

Variable sample time S-functions
Simulink software no longer crashes when an S-function with variable sample
time is placed in an atomic subsystem.

Bus selector detection of duplicated names
A bug related to the detection of a duplicated name in a bus that was feeding
a Bus Selector block was fixed.

Optimize block memory use
In Simulink 4.0, the Continuous and Discrete Transfer Function blocks and
the Discrete Filter block used more memory than they needed to, particularly
for the case of many poles. They now use an optimal amount of memory.

Miscellaneous fixes to the model loader
Miscellaneous bug fixes have been performed on the model loader:

357

Simulink® Release Notes

• The loader and saver now retain any comment lines (i.e., lines that begin
with #) that are found at the top of the model file.

• The loader does not crash on Windows NT® systems when file sizes are
integer multiples of 4096.

• The loader does not hang on corrupt models in which blocks with duplicate
names are found.

Profiler fixes
The Simulink profiler now saves its files in the temporary directory. See the
MATLAB command tempdir. The help was also updated.

Chirp block fix
The Chirp block now sweeps through frequencies correctly from the initial
frequency at the simulation start time to the target frequency at the target
time.

Function-call subsystem bug fixes
This version fixes several bugs related to the execution orders of function-call
subsystems.

Sorting bug fix
Previous versions incorrectly computed the direct feedthrough setting for
nonvirtual subsystems in triggered/function-call subsystems. This resulted in
incorrect execution (sorting) orders. Now all nonvirtual subsystems within
triggered subsystems have their direct feedthrough (needs input) flags set
for all input ports. This is needed because a nonvirtual subsystem with a
triggered sample time executes both its output and update methods together
within the context of the model’s output method.

Fixed handling of grounded/unconnected inputs feeding
certain blocks
Simulink 4.0 incorrectly handled grounded or unconnected inputs to level-1
and level-2 S-functions requiring contiguous inputs and to some Matrix
blocks. This has been fixed in Simulink 4.1.

358

Version 4.0 (R12) Simulink® Software

Version 4.0 (R12) Simulink Software
This table summarizes what’s new in V4.0 (R12):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

No

New features and changes introduced in this version are organized by these
topics:

• “Simulink Editor” on page 359

• “Modeling Enhancements” on page 362

• “Simulink Debugger” on page 363

• “Block Library” on page 364

• “SB2SL” on page 367

• “Port Name Property” on page 368

Simulink Editor
This section describes enhancements to the Simulink Editor.

Preferences
The Simulink Preferences dialog box allows you to specify default settings
for many options (see “Simulink Preferences Window” in the Simulink
documentation).

Text Alignment
Simulink 4.0 allows you to choose various alignments for annotation text. To
choose an alignment for an annotation, select the annotation and then select
Text Alignment from the editor menu bar or context (right-click) menu
(see “Annotating Diagrams”).

359

Simulink® Release Notes

UNIX Context Menus
The UNIX version of Simulink 4.0 now has context menus for block diagrams.
Click the right button on your mouse to display the menu.

Library Link Enhancements
Simulink 4.0 optionally displays an arrow in each block that represents a
library link in a model. Simulink 4.0 also allows you to modify a link in a
model and propagate the changes back to the library (see “Modifying Linked
Blocks” in the Simulink documentation).

Note Simulink software displays "Parameterized Link" on the parameter
dialog box of a masked subsystem whose parameters differ from the library
reference block to which the masked subsystem is linked. This feature, which
is not documented in the Simulink documentation, allows you to determine
quickly whether a library link differs from its reference.

Find Dialog Box
The Find dialog box enables you to search Simulink models and Stateflow
charts for objects that satisfy specified search criteria. You can use the dialog
box to find annotations, blocks, signals, states, state transitions, etc. To invoke
the Find dialog, select Find from the Simulink Editmenu (see “The Finder”).

Model Browser
The Model Browser’s toolbar includes the following new buttons:

• Show Library Links

Shows library links as nodes in the browser tree.

• Look Under Masks

Shows the contents of masked blocks as nodes in the browser tree.

Single Window Mode
Simulink software now provides two modes for opening subsystems. In
multiwindow mode, Simulink software opens each subsystem in a new

360

Version 4.0 (R12) Simulink® Software

window. In single-window mode, Simulink software closes the parent and
opens the subsystem (see "Window Reuse" in Using Simulink).

Keyboard Navigation
Simulink 4.0 provides the following new keyboard shortcuts.

Key Action

Tab Selects the next block in the block
diagram.

Shift+Tab Selects the previous block in the
block diagram.

Ctrl+Tab Cycles between the browser tree
pane and the diagram pane when
the model browser is enabled.

Enter Opens the currently selected
subsystem.

Esc Opens the parent of the current
subsystem.

Enhanced Library Browser
The Library Browser incorporates the following new features:

• Blocks no longer appear as browser tree nodes. Instead, they appear as
icons in the preview pane.

• The preview pane has moved from beneath the library tree pane to beside
the tree pane. You can create instances of blocks displayed in the preview
pane by dragging them from the preview pane and dropping them in a
model.

• Splitter bars now divide the browser’s panes, allowing the panes to be
independently resized.

• Double-clicking a block’s icon opens the block’s parameter dialog box with
all fields disabled. This allows you to inspect, but not modify, a library
block’s parameters.

• Double-clicking a library block opens the library in the preview pane.

361

Simulink® Release Notes

• You can now insert a block in the topmost model on your screen by
right-clicking the block in the preview pane and selecting Insert in... from
the context menu that appears. If no model is open or the topmost model is
a locked library, the Library Browser offers to create a model in which to
insert the block.

• The browser now contains a menu with File, Edit, and Help options.

• The block help text pane has moved from the bottom of the Library Browser
to the top.

• Selecting Find from the Library Browser’s Edit menu displays a modeless
Find dialog box.

• The browser’s search feature is much faster and supports regular
expressions.

Help Menus
Simulink 4.0 adds a Help menu to the menu bar on model and library
windows. The help item on a block context menu displays a help page for the
block. The help item on the model context menu displays the first page of
the Simulink documentation.

Modeling Enhancements

Hierarchical Variable Scoping
This release extends the ability of Simulink software to resolve references
to variables in masked subsystems. Previously Simulink software could
resolve references only to variables in a block’s local workspace. With this
release, Simulink software will resolve references to variables located
anywhere within the workspace hierarchy containing the block (see "The
Mask Workspace" in Using Simulink).

Note In some cases, hierarchical scoping will cause some models to behave
differently in the current release than in previous releases of Simulink
software.

362

Version 4.0 (R12) Simulink® Software

Matrix Signals
Many Simulink blocks can now accept or output matrix signals. A matrix
signal is a two-dimensional array of signal elements represented by a matrix.
Each matrix element represents the value of the corresponding signal element
at the current time step. In addition to matrix signals, Simulink software also
supports scalar (dimensionless) signals and vector signals (one-dimensional
arrays of signals). Simulink software can optionally thicken (select Wide
Lines from the Format menu) and display the dimensions of lines (select
Line Dimensions from the Format menu) that carry vector or matrix
signals. When you select the Line Dimensions option, Simulink software
displays a label of the form [r x c] above a matrix signal line, where r is the
number of rows and c is the number of columns. For example, the label [2 x
3] indicates that the line carries a two-row by three-column matrix signal.

You can use Simulink source blocks, such as a Sine Wave or a Constant block,
to generate matrix signals. For example, to create a time-invariant matrix
signal, insert a Constant block in your model and set its Constant Value
parameter to any MATLAB expression that evaluates to a matrix, e.g., [1 2;
3 4], that represents the desired signal. See "Working with Signals" in the
Simulink documentation for more information.

Simulink Data Objects
Simulink data objects allow a model to capture user-defined information
about parameters and signals, such as minimum and maximum values, units,
and so on (see "Working with Data Objects" in the Simulink documentation).

Block Execution Order
Simulink software now optionally displays the execution order of each block
on the model’s block diagram (see "Displaying Block Execution Order" in
the Simulink documentation).

Simulink Debugger
This section describes enhancements to the Simulink debugger.

363

Simulink® Release Notes

GUI Debugger Interface
Simulink 4.0 introduces a graphical user interface (GUI) for the Simulink
Debugger. For more information, see "Simulink Debugger" in the Simulink
documentation.

Block Library
This section describes enhancements to the Simulink block libraries.

Product Block
The Product block now supports both element-by-element and matrix
multiplication and inversion of inputs. The block’s parameter dialog includes
a newMultiplication parameter that allows you to specify whether the block
should multiply or invert inputs element-by-element or matrix-by-matrix.

Gain Block
The Gain block now supports matrix as well as element-wise multiplication
of the input signal by a gain factor. Both input signals and gain factors can
be matrices. The block’s parameter dialog includes a new Multiplication
parameter that allows you to choose the following options:

• K.*u (element-wise product)

• K*u (matrix product with the gain as the left operand)

• u*K (matrix product with the gain as the right operand)

Math Function Block
The Math Function block adds two new matrix-specific functions: transpose
and Hermitian. The first function outputs the transpose of the input matrix.
The second function outputs the complex conjugate transpose (Hermitian) of
the input matrix.

Reshape Block
Simulink 4.0 introduces the Reshape block, which changes the dimensionality
of its input signals, based on an Output dimensionality parameter that you
specify. For example, the block can change an n-element vector to a 1-by-N or

364

Version 4.0 (R12) Simulink® Software

N-by-1 matrix signal and vice versa. You can find the Reshape block in the
Simulink Signals & Systems library.

Multiplexing Matrix Signals
The Simulink Mux, Demux, and Bus Selector blocks have been enhanced to
support multiplexing of matrix signals.

Function Call Iteration Parameter
Simulink 4.0 adds a Number of iterations parameter to the Function Call
Generator block. This parameter allows you to specify the number of times
the target block is called per time step.

Probing Signal Dimensionality
The Probe block now optionally outputs the dimensionality of the signal
connected to its input.

Configurable Subsystem
The Configurable Subsystem block has been reimplemented to make it easier
to use. The configurable subsystem block now has a Blocks menu that allows
you to choose which block the subsystem represents. To display the menu,
select the configurable subsystem and then Blocks from the Simulink editor’s
Edit or context (right click) menu.

Look-Up Table Blocks
This release provides four new Look-Up Table (LUT) blocks.

• Direct Look-Up Table (n-D)

• Look-Up Table (n-D)

• PreLookup Index Search (Obsolete)

• Interpolation (n-D) Using PreLookup (Obsolete)

The blocks reside in the Simulink Functions and Tables block library.

365

Simulink® Release Notes

Polynomial Block
The Polynomial block outputs a polynomial function of its input. The block
resides in the Simulink Functions and Tables block library.

Signal Specification
The Signal Specification block allows you to specify the attributes that the
input signal must satisfy. If the input signal does not meet the specification,
the block generates an error.

ADA S-Functions
Simulink software now supports S-functions coded in ADA. See Writing
S-Functions for more information.

Bitwise Logical Operator Block
The Bitwise Operator block is a new block that logically masks, inverts,
or shifts the bits of an unsigned integer signal. See the online Simulink
documentation for details.

Atomic Subsystems
Simulink 4.0 allows you to designate subsystems as atomic as opposed to
virtual. An atomic subsystem is a true subsystem. When simulating a model,
Simulink software executes all blocks contained by an atomic subsystem block
before executing the next block of the containing model (or atomic subsystem).

By declaring a subsystem atomic, you guarantee that Simulink software
completes execution of the subsystem before executing any other blocks at
the same level in the model hierarchy. See "Atomic Subsystems" in Using
Simulink for more information.

Note Conditionally executed subsystems are inherently atomic. Simulink
software does not allow you to specify them as atomic or virtual.

366

Version 4.0 (R12) Simulink® Software

SB2SL

SB2SL Extends Code Generation Support
SB2SL, which is included as part of the Simulink product, allows you to
translate SystemBuild SuperBlocks to Simulink models.

For Release 12, SB2SL 2.1 has been enhanced to provide more complete
support for use with Real-Time Workshop software. If you use
Real-TimeWorkshop software version 4.0 to generate code for models you
have converted from SystemBuild to Simulink software (using SB2SL), then
code is generated for most translated blocks in the model.

The blocks that do not support code generation through Real-Time Workshop
software version 4.0 are:

• ConditionBlock

• Decoder

• Encoder

• GainScheduler

• Interp Table (Archive library)

• ShiftRegister

Note SB2SL 2.1 also includes a number of important bug fixes.

367

Simulink® Release Notes

Port Name Property
In the current release, a port’s name property refers to the port’s (and line’s)
name, which, in the current release, can differ from the line’s label.

Compatibility Considerations
In previous releases, the name property of ports and lines referred to the label
of the line connected to the port. If you need to get the line’s label, invoke

get_param(p, 'label')

where p is the handle of the port.

368

Compatibility and Limitations Summary for Simulink® Software

Compatibility and Limitations Summary for Simulink
Software

This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with Version
Compatibility Impact

Latest Version
V7.8 (R2011b)

See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Enable Port as an Input to a Root-Level Model”
on page 6

• “Default Design Minimum and Maximum are
[]/[], Not -inf/inf” on page 10

• “Bus Elements Now Have Design Minimum and
Maximum Properties” on page 11

• “Alias Types No Longer Supported with the
slDataTypeAndScale Function” on page 14

• “Simulink.Signal and Simulink.Parameter Will
Not Accept Input Arguments” on page 15

• “Simulation Data Inspector Tool Replaces Time
Series Tool” on page 16

• “Signal Conversion Block Enhancements” on
page 17

• “Sample Time Propagation Changes” on page 19

• “Frame-Based Processing” on page 20

• “New Delay Block That Upgrades the Integer
Delay Block” on page 21

369

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Conversion of Error and Warning Message
Identifiers” on page 30

V7.7 (R2011a) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Refreshing Linked Blocks and Model Blocks” on
page 34

• “Embedded MATLAB Function Block Renamed
as MATLAB Function Block” on page 35

• “No Longer Able to Set RTWInfo or
CustomAttributes Property of Simulink Data
Objects” on page 40

• “Global Data Stores Now Treat Vector Signals as
One or Two Dimensional” on page 41

• “No Longer Able to Use Trigger Signals Defined
as Enumerations” on page 42

• “Conversions of Simulink.Parameter Object
Structure Field Data to Corresponding Bus
Element Type Supported for double Only” on
page 42

• “Data Store Support for Bus Signals” on page 44

• “Lookup Table, Lookup Table (2-D), and Lookup
Table (n-D) Blocks Replaced with Newer Versions
in the Simulink Library” on page 46

• “Ground Block Always Has Constant Sample
Time” on page 62

• “S-Functions Generated with legacy_code
function and singleCPPMexFile S-Function
Option Must Be Regenerated” on page 68

V7.6.1 (R2010bSP1) None

370

Compatibility and Limitations Summary for Simulink® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

V7.6 (R2010b) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Model Workspace Is Read-Only During
Compilation” on page 71

• “Support for Multiple Normal Mode Instances of
a Referenced Model” on page 71

• “sl_convert_to_model_reference Function
Removed” on page 73

• “Enhanced Support for Bus Objects as Data
Types” on page 75

• “Arrays of Buses” on page 80

• “Integer Delay and Unit Delay Blocks Now Have
Input Processing Parameter” on page 85

• “Data Store Read Block Sample Time Default
Changed to -1” on page 86

• “Support of Frame-Based Signals Being Removed
From the Bias Block” on page 87

• “Conversion of Error and Warning Messages
Identifiers” on page 92

• “S-Functions Generated with legacy_code
function and singleCPPMexFile S-Function
Option Must Be Regenerated” on page 93

• “Level-2 M-File S-Function Block Name Changed
to Level-2 MATLAB S-Function” on page 93

• “Function Being Removed in a Future Release”
on page 94

• “Verbose Accelerator Builds Parameter Applies
to Model Reference SIM Target Builds in All
Cases” on page 73

371

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

V7.5 (R2010a) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Trigger Port Enhancements” on page 98

• “Custom Floating-Point Types No Longer
Supported” on page 101

• “Models with No States Now Return Empty
Variables” on page 102

• “To File Block Enhancements” on page 103

• “Enhanced Support for Proper Use of Bus
Signals” on page 104

• “New Square Root Block” on page 108

• “Multiport Switch Block Allows Explicit
Specification of Data Port Indices ” on page 110

• “Data Type Duplicate Block Enhancement” on
page 115

• “Lookup Table and Lookup Table (2-D) Blocks To
Be Deprecated in a Future Release” on page 116

• “Elementary Math Block Now Obsolete” on page
120

• “DocBlock Block RTF File Compression” on page
120

• “Simulink Extras PID Controller Blocks
Deprecated” on page 120

• “Model Explorer Column Views” on page 121

• “Model Explorer Display of Masked Subsystems
and Linked Library Subsystems” on page 122

372

Compatibility and Limitations Summary for Simulink® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Legacy Code Tool Enhanced to Support
Enumerated Data Types and Structured Tunable
Parameters” on page 126

• “Defining Mask Icon Variables” on page 96

V7.4.1 (R2009bSP1) None

V7.4 (R2009b) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Improved Accuracy of Variable-Step Discrete
Solver” on page 130

• “New Compilation Report for Embedded
MATLAB Function Blocks” on page 135

• “Integer Arithmetic Applied to Sample Hit
Computations” on page 130

• “Simulation Restart in R2009b” on page 138

• “Data Class Infrastructure Partially Deprecated”
on page 137

• “Discrete Transfer Fcn Block Has Performance,
Data Type, Dimension, and Complexity
Enhancements” on page 141

• “Direct Lookup Table (n-D) Block Enhancements”
on page 146

• “Trigger Port Enhancements” on page 98

373

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

V7.3 (R2009a) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Lookup Table (n-D) and Interpolation Using
Prelookup Blocks Perform Efficient Fixed-Point
Interpolations” on page 158

• “New Rounding Modes Added to Multiple Blocks”
on page 159

• “Discrete Filter Block Performance, Data Type,
Dimension, and Complexity Enhancements” on
page 162

• “Dot Product Block Converted from S-Function to
Core Block” on page 163

• “Removal of Lookup Table Designer from the
Lookup Table Editor” on page 168

• “Signal Can Resolve to at Most One Signal
Object” on page 155

V7.2 (R2008b) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Conditionally Executed Subsystem Initial
Conditions” on page 171

• “Data Type Override Now Works Consistently on
Outputs” on page 176

• “Improperly-Scaled Fixed-Point Relational
Operators Now Match MATLAB Results” on page
177

• “One Parameter Controls Accelerator Mode Build
Verbosity” on page 174

374

Compatibility and Limitations Summary for Simulink® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Signal Logging and Test Points Are Controlled
Independently” on page 182

• “Signal Logging Consistently Retains Duplicate
Signal Regions” on page 183

• “Modifying a Link to a Library Block in a Callback
Function Can Cause Illegal Modification Errors”
on page 179

• “Mapping of Target Object Properties to
Parameters in the Configuration Parameters
Dialog Box” on page 201

• “Legacy Code Tool Enhancement” on page 211

V7.1 (R2008a) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Specify Scaling Explicitly for Fixed-Point Data”
on page 215

• “Array Format Cannot Be Used to Export
Multiple Matrix Signals” on page 216

• “Changing Nontunable Values Does Not Affect
the Current Simulation” on page 217

• “Detection of Illegal Rate Transitions” on page
217

• “Explicit Scaling Required for Fixed-Point Data”
on page 217

• “Rate Transition Blocks Needed on Virtual
Buses” on page 220

• “Sample Times for Virtual Blocks” on page 221

• “New Discrete FIR Filter Block Replaces
Weighted Moving Average Block” on page 222

375

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Solver Controls” on page 225

• “S-Functions” on page 227

V7.0 (R2007b) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Simulink® Accelerator” on page 228

• “Mask Editor Now Requires Java” on page 230

• “Support for Algorithms That Span Multiple
M-Files” on page 231

• “New Break Link Options for save_system
Command” on page 238

• “Simulink Software Checks Data Type of the
Initial Condition Signal of the Integrator Block”
on page 238

V6.6.1 (R2007a+) None

V6.6 (R2007a) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “GNU Compiler Upgrade” on page 246

• “Change to
Simulink.ModelAdvisor.getModelAdvisor
Method” on page 249

• “Legacy Code Tool Enhancements” on page 251

• “Using & and | Operators in Embedded MATLAB
Function Blocks” on page 256

• “Calling get Function from Embedded MATLAB
Function Blocks” on page 257

376

Compatibility and Limitations Summary for Simulink® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Default for Signal Resolution Parameter Has
Changed” on page 259

• “Port Parameter Evaluation Has Changed” on
page 262

• “Referencing Configuration Sets” on page 260

• “Change to PaperPositionMode Parameter” on
page 264

• “Change in Version 6.5 (R2006b) Introduced
Incompatibility” on page 265

• “SimulationMode Removed From Configuration
Set” on page 265

V6.5 (R2006b) See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Enhanced Lookup Table Blocks” on page 267

• “Parameter Objects Can Now Be Used to Specify
Model Configuration Parameters” on page 271

• “New Requirement for Calling MATLAB
Functions from Embedded MATLAB Function
Blocks” on page 276

• “Type and Size Mismatch of Values Returned
from MATLAB Functions Generates Error” on
page 277

• “Changes to Integrator Block’s Level Reset
Options” on page 273

• “Attempting to Reference a Symbol in an
Uninitialized Mask Workspace Generates an
Error” on page 272

377

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Embedded MATLAB Function Blocks Cannot
Output Character Data” on page 278

V6.4.1 (R2006a+) None

V6.4
(R2006a)

See the Compatibility Considerations
subheading for each of these new features or
changes:

• “Range-Checking for Parameter and Signal
Object Values” on page 281

• “Concatenate Block” on page 282

• “Built-in Block’s Initial Appearance Reflects
Parameter Settings” on page 283

• “Setting FIMATH Cast Before Sum to False
No Longer Supported in Embedded MATLAB
MATLAB Function Blocks” on page 289

• “Type Mismatch of Scalar Output Data in
Embedded MATLAB Function Blocks Generates
Error” on page 290

• “Implicit Parameter Type Conversions No Longer
Supported in Embedded MATLAB Function
Blocks” on page 291

V6.3
(R14SP3)

See the Compatibility Considerations and/or
Limitations subheading for each of these changes:

• “Model Referencing” on page 293

• “MEX-Files on Windows Systems” on page 301

• “Fixed-Point Functions No Longer Supported for
Use in Signal Objects” on page 301

• “Parameter Object Expressions No Longer
Supported in Dialog Boxes” on page 301

• “MEX-File Extension Changed” on page 302

378

Compatibility and Limitations Summary for Simulink® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

V6.2
(R14SP2)

See the Compatibility Considerations and/or
Limitations subheadings for each of these changes:

• “Rootlevel Input Ports” on page 304

V6.1
(R14SP1)

See the Compatibility Considerations for this
change:

• “Model Load Warnings” on page 307

V6.0
(R14)

See the Compatibility Considerations and
Limitations subheadings for each of these changes:

• “Model Referencing” on page 309

• “MATLAB Data Type Conversions” on page 318

• “Signal Object Resolution Changes” on page 318

• “Loading Models Containing Non-ASCII
Characters” on page 319

• “Change in Sample Time Behavior of Unary
Minus Block” on page 320

• “Initial Output of Conditionally Executed
Subsystems” on page 320

• “Execution Context Default Changes” on page
320

• “Internal Signal Structures Revamped” on page
316

V5.0.1
(R13.0.1)

See the Compatibility Considerations
subheading for this change:

• “Tunable Parameters for Unified Fixed-Point
Blocks” on page 333

379

Simulink® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

V5.0
(R13)

See the Compatibility Considerations
subheadings for each of these changes:

• “Enhanced Diagnostic Viewer” on page 342

• “Enhanced Mask Editor” on page 343

• “Model Discretizer” on page 344

V4.1
(R12+)

See the Compatibility Considerations
subheadings for each of these changes:

• “Simulink Block Library Reorganization” on page
353

• “S-Functions Sorted Like Built-In Blocks” on
page 354

• “Added Latched Triggered Subsystems” on page
354

• “Self-Triggering Subsystems Are No Longer
Allowed” on page 355

• “Running Simulink 4.1 Models in Simulink 4.0
Software” on page 355

• “Direct Feedthrough Compensation Deprecated”
on page 356

• “Improved Invalid Model Configuration
Diagnostics” on page 356

V4.0
(R12)

See the Compatibility Considerations for this
change:

• “Port Name Property” on page 368

380

	toc
	Summary by Version
	Using Release Notes
	What Is in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Documentation on the MathWorks Web Site
	Version 7.8 (R2011b) Simulink Software
	Simulation Performance
	Accelerator Mode Now Supports Algebraic Loops

	Component-Based Modeling
	For Each Subsystem Support for Continuous Dynamics
	Enable Port as an Input to a Root-Level Model
	Finder Option for Looking Inside Referenced Models
	Improved Detection for Rebuilding Model Reference Targets
	Model Reference Target Generation Closes Unneeded Libraries
	Concurrent Execution Support
	Finer Control of Library Links
	Mask Built-In Blocks with the Mask Editor
	Parameter Checking in Masked Blocks
	Menu Options to Control Variants

	MATLAB Function Blocks
	Simulation Supported When the Current Folder Is a UNC Path

	Simulink Data Management
	Default Design Minimum and Maximum are []/[], Not -inf/inf
	Bus Elements Now Have Design Minimum and Maximum Properties
	Compiled Design Minimum and Maximum Values Exposed on Block Inpo
	Back-Propagated Minimum and Maximum of Portion of Wide Signal Ar
	Easier Importing of Signal Logging Data
	Partial Specification of External Input Data
	Command-Line Interface for Signal Logging
	Access to the Data Import/Export Pane from the Signal Logging Se
	Inexact Property Names for User-Defined Data Objects Will Not Be
	Alias Types No Longer Supported with the slDataTypeAndScale Func
	Simulink.StructType Objects Will Not Be Supported in a Future Re
	Old Block-specific Data Type Parameters No Longer Supported
	Simulink.Signal and Simulink.Parameter Will Not Accept Input Arg
	Data Import/Export Pane Changes
	Simulation Data Inspector Tool Replaces Time Series Tool

	Simulink File Management
	Project Management

	Simulink Signal Management
	Signal Conversion Block Enhancements
	Environment Controller Block Support for Non-Bus Signals
	Sample Time Propagation Changes
	Frame-Based Processing

	Block Enhancements
	New Delay Block That Upgrades the Integer Delay Block
	Sqrt and Reciprocal Sqrt Blocks Support Explicit Specification o
	Discrete Zero-Pole Block Supports Single-Precision Inputs and Ou
	n-D Lookup Table Block Supports Tunable Table Size
	Boolean Output Data Type Support for Logic Blocks
	Derivative Block Parameter Change

	User Interface Enhancements
	Model Explorer: First Two Columns in Contents Pane Remain Visibl
	Model Explorer: Subsystem Code View Added
	Model Explorer: New Context Menu Options for Model Configuration
	Simulation Data Inspector Enhancements
	Conversion of Error and Warning Message Identifiers

	New Modeling Guidelines
	Modeling Guidelines for High-Integrity Systems
	Modeling Guidelines for Code Generation

	Version 7.7 (R2011a) Simulink Software
	Simulation Performance
	Restore SimState in Models Created in Earlier Simulink Versions
	Improved Absolute Tolerance Implementation

	Component-Based Modeling
	Refreshing Linked Blocks and Model Blocks
	Enhanced Model Block Displays Variant Model Choices
	Creating a Protected Model Using the Simulink Editor

	MATLAB Function Blocks
	Embedded MATLAB Function Block Renamed as MATLAB Function Block
	Support for Buses in Data Store Memory

	Simulink Data Management
	Signal Logging Selector
	Dataset Format Option for Signal Logging Data
	From File Block Supports Zero-Crossing Detection
	Signal Builder Block Now Supports Virtual Bus Output
	Signal Builder Block Now Shows the Currently Active Group
	signalbuilder Function Change
	Range-Checking Logic for Fixed-Point Data During Simulation Impr
	Data Object Wizard Now Supports Boolean, Enumerated, and Structu
	Error Now Generated When Initialized Signal Objects Back Propaga
	No Longer Able to Set RTWInfo or CustomAttributes Property of Si
	Global Data Stores Now Treat Vector Signals as One or Two Dimens
	No Longer Able to Use Trigger Signals Defined as Enumerations
	Conversions of Simulink.Parameter Object Structure Field Data to
	Simulink.CustomParameter and Simulink.CustomSignal Data Classes
	Parts of Data Class Infrastructure No Longer Available

	Simulink Signal Management
	Data Store Support for Bus Signals
	Accessing Bus and Matrix Elements in Data Stores
	Array of Buses Support for Permute Dimensions, Probe, and Reshap
	Using the Bus Editor to Create Simulink.Parameter Objects and MA

	Block Enhancements
	Lookup Table, Lookup Table (2-D), and Lookup Table (n-D) Blocks
	Magnitude-Angle to Complex Block Supports CORDIC Algorithm and F
	Trigonometric Function Block Supports Complex Exponential Output
	Shift Arithmetic Block Supports Specification of Bit Shift Value
	Multiple Lookup Table Blocks Enable Removal of Range-Checking Co
	Enhanced Dialog Layout for the Prelookup and Interpolation Using
	Product of Elements Block Uses a Single Algorithm for Element-Wi
	Sign Block Supports Complex Floating-Point Inputs
	MATLAB Fcn Block Renamed to Interpreted MATLAB Function Block
	Environment Controller Block Port Renamed from RTW to Coder
	Block Parameters on the State Attributes Tab Renamed
	Block Parameters and Values Renamed for Lookup Table Blocks
	Performance Improvement for Single-Precision Computations of Ele
	Dead Zone Block Expands the Region of Zero Output
	Enhanced PID Controller Blocks Display Compensator Formula in Bl
	Ground Block Always Has Constant Sample Time
	New Function-Call Feedback Latch Block
	Outport Driving Merge Block Does Not Require IC in Simplified In
	Discrete Filter, Discrete FIR Filter, and Discrete Transfer Fcn
	Model Blocks Can Now Use the GetSet Custom Storage Class

	User Interface Enhancements
	Model Explorer: Hiding the Group Column
	Simulation Data Inspector Enhancements
	Model Advisor
	Configuration Parameters Dialog Box Changes

	S-Functions
	S-Functions Generated with legacy_code function and singleCPPMex

	Version 7.6.1 (R2010bSP1) Simulink Software
	Version 7.6 (R2010b) Simulink Software
	Simulation Performance
	Elimination of Regenerating Code for Rebuilds

	Component-Based Modeling
	Model Workspace Is Read-Only During Compilation
	Support for Multiple Normal Mode Instances of a Referenced Model
	New Variant Subsystem Block for Managing Subsystem Design Altern
	Support for Bus and Enumerated Data Types on Masks
	sl_convert_to_model_reference Function Removed
	Verbose Accelerator Builds Parameter Applies to Model Reference

	Embedded MATLAB Function Blocks
	Specialization of Embedded MATLAB Function Blocks in Simulink Li
	Support for Creation and Processing of Arrays of Buses
	Ability to Include MATLAB Code as Comments in Generated C Code
	Data Properties Dialog Box Enhancements

	Simulink Data Management
	Enhanced Support for Bus Objects as Data Types
	Enhancements to Simulink.NumericType Class
	Importing Signal Data Sets into the Signal Builder Block
	signalbuilder Function Changes
	From File Block Enhancements
	Finding Variables Used by a Model or Block
	 enumeration Function Replaced With MATLAB Equivalent
	Programmatic Creation of Enumerations
	Simulink.Signal and Simulink.Parameter Objects Now Obey Model Da

	Simulink File Management
	Autosave Upgrade Backup
	Model Dependencies Tools

	Simulink Signal Management
	Arrays of Buses
	Loading Bus Data to Root Input Ports

	Block Enhancements
	Prelookup Block Supports Dynamic Breakpoint Data
	Interpolation Using Prelookup Block Supports Dynamic Table Data
	Multiport Switch Block Supports Specification of Default Case fo
	Switch Block Icon Shows Criteria and Threshold Values
	Trigonometric Function Block Supports Expanded Input Range for C
	Repeating Sequence Stair Block Supports Enumerated Data Types
	Abs Block Supports Specification of Minimum Output Value
	Saturation Block Supports Logging of Minimum and Maximum Values
	Vector Concatenate Block Now Appears in the Commonly Used and Si
	Model Discretizer Support for Second-Order Integrator Block
	Integer Delay and Unit Delay Blocks Now Have Input Processing Pa
	Data Store Read Block Sample Time Default Changed to -1
	Support of Frame-Based Signals Being Removed From the Bias Block
	Relaxation of Limitations for Function-Call Split Block

	User Interface Enhancements
	Model Explorer and Command-Line Support for Saving and Loading C
	Model Explorer: Grouping by a Property
	Model Explorer: Filtering Contents
	Model Explorer: Finding Variables That Are Used by a Model or Bl
	Model Explorer: Finding Blocks That Use a Variable
	Model Explorer: Exporting and Importing Workspace Variables
	Model Explorer: Link to System
	Lookup Table Editor Can Now Propagate Changes in Table Data to W
	Enhanced Designation of Hybrid Sample Time
	Inspect Solver Jacobian Pattern
	Inspection of Values of Elements in Checksum
	Conversion of Error and Warning Messages Identifiers
	View and Compare Logged Signal Data from Multiple Simulations Us
	Viewing Requirements Linked to Model Objects

	S-Functions
	Legacy Code Tool Support for Arrays of Simulink.Bus
	S-Functions Generated with legacy_code function and singleCPPMex
	Level-2 M-File S-Function Block Name Changed to Level-2 MATLAB S

	Function Being Removed in a Future Release

	Version 7.5 (R2010a) Simulink Software
	Simulation Performance
	Computation of Sparse and Analytical Jacobian for Implicit Simul
	Sparse Perturbation Support for RSim and Rapid Accelerator Mode
	Increased Accuracy in Detecting Zero-Crossing Events
	Saving Code Generated by Accelerating Models to slprj Folder

	Component-Based Modeling
	Defining Mask Icon Variables
	For Each Subsystem Block
	New Function-Call Split Block
	Trigger Port Enhancements
	Model Reference Support for Custom Code

	Embedded MATLAB Function Blocks
	New Ability to Use Global Data
	Support for Logical Indexing
	Support for Variable-Size Matrices in Buses
	Support for Tunable Structure Parameters
	Check Box for 'Treat as atomic unit' Now Always Selected

	Simulink Data Management
	New Function Finds Variables Used by Models and Blocks
	MATLAB Structures as Tunable Structure Parameters
	Simulink.saveVars Documentation Added
	Custom Floating-Point Types No Longer Supported
	Data Store Logging
	Models with No States Now Return Empty Variables
	To File Block Enhancements
	From File Block Enhancements
	Root Inport Support for Fixed-Point Data Contained in a Structur

	Simulink Signal Management
	Enhanced Support for Proper Use of Bus Signals
	Bus Initialization
	S-Functions for Working with Buses
	Command Line API for Accessing Information About Bus Signals
	Signal Name Propagation for Bus Selector Block

	Block Enhancements
	New Square Root Block
	New Second-Order Integrator Block
	New Find Nonzero Elements Block
	PauseFcn and ContinueFcn Callback Support for Blocks and Block D
	Gain Block Can Inherit Parameter Data Type from Gain Value
	Direct Lookup Table (n-D) Block Enhancements
	Multiport Switch Block Allows Explicit Specification of Data Por
	Trigonometric Function Block Supports CORDIC Algorithm and Fixed
	Enhanced Block Support for Enumerated Data Types
	Lookup Table Dynamic Block Supports Direct Selection of Built-In
	Compare To Zero and Wrap To Zero Blocks Now Support Parameter Ov
	Data Type Duplicate Block Enhancement
	Lookup Table and Lookup Table (2-D) Blocks To Be Deprecated in a
	Elementary Math Block Now Obsolete
	DocBlock Block RTF File Compression
	Simulink Extras PID Controller Blocks Deprecated

	User Interface Enhancements
	Model Explorer Column Views
	Model Explorer Display of Masked Subsystems and Linked Library S
	Model Explorer Object Count
	Model Explorer Search Option for Variable Usage
	Model Explorer Display of Signal Logging and Storage Class Prope
	Model Explorer Column Insertion Options
	Diagnostics for Data Store Memory Blocks
	New Command-Line Option for RSim Targets
	Simulink.SimulationOutput.get Method for Obtaining Simulation Re
	Simulink.SimState.ModelSimState Class has New snapshotTime Prope
	Simulink.ConfigSet.saveAs to Save Configuration Sets

	S-Functions
	Building C MEX-Files from Ada and an Example Ada Wrapper
	New S-Function API Checks for Branched Function-Calls
	New C MEX S-Function API and M-File S-Function Flag for Complian
	Legacy Code Tool Enhanced to Support Enumerated Data Types and S

	Documentation Improvements
	Modeling Guidelines for High-Integrity Systems
	MathWorks Automotive Advisory Board Control Algorithm Modeling G

	Version 7.4.1 (R2009bSP1) Simulink Software
	Version 7.4 (R2009b) Simulink Software
	Simulation Performance
	Single-Output sim Syntax
	Expanded Support by Rapid Accelerator
	SimState Support in Accelerator Mode
	Integer Arithmetic Applied to Sample Hit Computations
	Improved Accuracy of Variable-Step Discrete Solver

	Component-Based Modeling
	Enhanced Library Link Management
	Enhanced Mask Editor Provides Tabs and Signal Attributes
	Model Reference Variants
	Protected Referenced Models
	Simulink Manifest Tools
	S-Function Builder

	Variable-Size Signals
	Simulink Support
	Simulink Block Support

	Embedded MATLAB Function Blocks
	Support for Variable-Size Arrays and Matrices
	Change in Text and Visibility of Parameter Prompt for Easier Use
	New Compilation Report for Embedded MATLAB Function Blocks
	New Options for Controlling Run-time Checks for Faster Performan
	Embedded MATLAB Function Blocks Improve Size Propagation Behavio

	Simulink Data Management
	New Function Exports Workspace Variables and Values
	New Enumerated Constant Block Outputs Enumerated Data
	Enhanced Switch Case Block Supports Enumerated Data
	Code for Multiport Switch Block Shows Enumerated Values
	Data Class Infrastructure Partially Deprecated
	Saving Simulation Results to a Single Object
	Simulation Restart in R2009b
	Removing Support for Custom Floating-Point Types in Future Relea

	Simulink File Management
	Removal of Functions
	Deprecation of SaveAs to R12 and R13
	Improved Behavior of Save_System

	Block Enhancements
	New Turnkey PID Controller Blocks for Convenient Controller Simu
	New Enumerated Constant Block Outputs Enumerated Data
	Enhanced Switch Case Block Supports Enumerated Data
	Code for Multiport Switch Block Shows Enumerated Values
	Discrete Transfer Fcn Block Has Performance, Data Type, Dimensio
	Lookup Table (n-D) Block Supports Parameter Data Types Different
	Reduced Memory Use and More Efficient Code for Evenly Spaced Bre
	Math Function Block Computes Reciprocal of Square Root
	Math Function Block Enhancements for Real-Time Workshop Code Gen
	Relational Operator Block Detects Signals That Are Infinite, NaN
	Changes in Text and Visibility of Dialog Box Prompts for Easier
	Direct Lookup Table (n-D) Block Enhancements
	Unary Minus Block Enhancements
	Weighted Sample Time Block Enhancements
	Switch Case Block Parameter Change
	Signal Conversion Block Parameter Change
	Compare To Constant and Compare To Zero Blocks Use New Default S
	Signal Builder Block Change

	User Interface Enhancements
	Context-Sensitive Help for Simulink Blocks in the Continuous Lib
	Adding Blocks from a Most Frequently Used Blocks List
	Highlighting for Duplicate Inport Blocks
	Using the Model Explorer to Add a Simulink.NumericType Object
	Block Output Display Dialog Has OK and Cancel Buttons
	Improved Definition of Hybrid Sample Time
	Find Option in the Model Advisor

	Version 7.3 (R2009a) Simulink Software
	Simulation Performance
	Saving and Restoring the Complete SimState
	Save Simulink Profiler Results

	Component-Based Modeling
	Port Value Displays in Referenced Models
	Parallel Builds Enable Faster Diagram Updates for Large Model Re

	Embedded MATLAB Function Blocks
	Support for Enumerated Types
	Use of Basic Linear Algebra Subprograms (BLAS) Libraries for Spe

	Data Management
	Signal Can Resolve to at Most One Signal Object
	“Signed” Renamed to “Signedness” in the Simulink.NumericType cla
	“Sign” Renamed to “Signedness” in the Data Type Assistant
	Tab Completion for Enumerated Data Types

	Simulink File Management
	Model Dependencies Tools

	Block Enhancements
	Prelookup and Interpolation Using Prelookup Blocks Support Param
	Lookup Table (n-D) and Interpolation Using Prelookup Blocks Perf
	Expanded Support for Simplest Rounding Mode to Maximize Block Ef
	New Rounding Modes Added to Multiple Blocks
	Lookup Table (n-D) Block Performs Faster Calculation of Index an
	Discrete FIR Filter Block Supports More Filter Structures
	Discrete Filter Block Performance, Data Type, Dimension, and Com
	MinMax Block Performs More Efficient and Accurate Comparison Ope
	Logical Operator Block Supports NXOR Boolean Operator
	Discrete-Time Integrator Block Uses Efficient Integration-Limiti
	Dot Product Block Converted from S-Function to Core Block
	Pulse Generator Block Uses New Default Values for Period and Pul
	Random Number, Uniform Random Number, and Unit Delay Blocks Use
	Trigonometric Function Block Provides Better Support of Accelera
	Reshape Block Enhanced with New Input Port
	Multidimensional Signals in Simulink Blocks
	Subsystem Blocks Enhanced with Read-Only Property That Indicates

	User Interface Enhancements
	Port Value Displays in Referenced Models
	Print Sample Time Legend
	M-API for Access to Compiled Sample Time Information
	Model Advisor Report Enhancements
	Counterclockwise Block Rotation
	Physical Port Rotation for Masked Blocks
	Smart Guides
	Customizing the Library Browser's User Interface
	Subsystem Creation Command

	S-Functions
	Removal of Lookup Table Designer from the Lookup Table Editor
	Compatibility Considerations

	Version 7.2 (R2008b) Simulink Software
	Simulation Performance
	Parallel Simulations in Rapid Accelerator Mode
	Improved Rebuild Mechanism in Rapid Accelerator Mode
	Data Type Size Limit on Accelerated Simulation Removed
	New Initialization Behavior in Conditional, Action, and Iterator

	Component-Based Modeling
	Processor-in-the-Loop Mode in Model Block
	Conditionally Executed Subsystem Initial Conditions
	Model Block Input Enhancement
	One Parameter Controls Accelerator Mode Build Verbosity

	Embedded MATLAB Function Blocks
	Support for Fixed-Point Word Lengths Up to 128 Bits
	Enhanced Simulation and Code Generation Options for Embedded MAT
	Data Type Override Now Works Consistently on Outputs
	Improperly-Scaled Fixed-Point Relational Operators Now Match MAT

	Data Management
	Support for Enumerated Data Types
	Simulink Bus Editor Enhancements
	New Model Advisor Check for Proper Data Store Memory Usage

	Simulink File Management
	Model Dependencies Tools

	Block Enhancements
	Trigonometric Function Block
	Math Function Block
	Merge Block
	Discrete-Time Integrator Block
	Modifying a Link to a Library Block in a Callback Function Can C
	Random Number Block
	Signal Generator Block
	Sum Block
	Switch Block
	Uniform Random Number Block

	User Interface Enhancements
	Sample Time
	Model Advisor
	“What’s This?” Context-Sensitive Help for Commonly Used Blocks
	Compact Icon Option Displays More Blocks in Library Browser
	Signal Logging and Test Points Are Controlled Independently
	Signal Logging Consistently Retains Duplicate Signal Regions
	Simulink Configuration Parameters
	Model Help Menu Update
	Unified Simulation and Embeddable Code Generation Options
	Mapping of Target Object Properties to Parameters in the Configu
	What Happens When You Load an Older Model in R2008b
	What Happens When You Save an Older Model in R2008b

	New Parameters in the Configuration Parameters Dialog Box for Si

	S-Functions
	Ada S-Functions
	Legacy Code Tool Enhancement

	MATLAB Changes Affecting Simulink
	Changes to MATLAB Startup Options
	Handle Graphics Not Supported Under -nojvm Startup Option

	Version 7.1 (R2008a) Simulink Software
	Simulation Performance
	Rapid Accelerator
	Additional Zero Crossing Algorithm

	Component-Based Modeling
	Efficient Parent Model Rebuilds
	Scalar Root Inputs Passed Only by Reference
	Unlimited Referenced Models

	Embedded MATLAB Function Blocks
	Nontunable Structure Parameters
	Bidirectional Traceability
	Specify Scaling Explicitly for Fixed-Point Data

	Data Management
	Array Format Cannot Be Used to Export Multiple Matrix Signals
	Bus Editor Upgraded
	Changing Nontunable Values Does Not Affect the Current Simulatio
	Detection of Illegal Rate Transitions
	Explicit Scaling Required for Fixed-Point Data
	Fixed-Point Details Display Available
	More than 2GB of Simulation Data Can be Logged on 64-Bit Platfor
	Order of Simulink and MPT Parameter and Signal Fields Changed
	Range Checking for Complex Numbers
	Rate Transition Blocks Needed on Virtual Buses
	Sample Times for Virtual Blocks
	Signals Needing Resolution Are Graphically Indicated

	Simulink File Management
	Autosave
	Old Version Notification
	Model Dependencies Tools

	Block Enhancements
	New Discrete FIR Filter Block Replaces Weighted Moving Average B
	Rate Transition Block Enhancements
	Enhanced Lookup Table (n-D) Block
	New Accumulator Parameter on Sum Block

	User Interface Enhancements
	Simulink Library Browser
	Simulink Preferences Window
	Model Advisor
	Solver Controls

	“What’s This?” Context-Sensitive Help Available for Simulink Con
	S-Functions
	Simplified Level-2 M-File S-Function Template
	Compatibility Considerations

	Version 7.0 (R2007b) Simulink Software
	Simulation Performance
	Simulink Accelerator
	Simulink Profiler
	Compiler Optimization Level
	Variable-Step Discrete Solver
	Referenced Models Can Execute in Normal or Accelerator Mode
	Accelerator and Model Reference Targets Now Use Standard Interna

	Component-Based Modeling
	New Instance View Option for the Model Dependency Viewer
	Mask Editor Now Requires Java

	Embedded MATLAB Function Blocks
	Complex and Fixed-Point Parameters
	Support for Algorithms That Span Multiple M-Files
	Loading R2007b Embedded MATLAB Function Blocks in Earlier Versio

	Data Management
	New Diagnostic for Continuous Sample Time on Non-Floating-Point
	New Standardized User Interface for Specifying Data Types
	New Block Parameters for Specifying Minimum and Maximum Values
	New Range Checking of Block Parameters
	New Diagnostic for Checking Signal Ranges During Simulation

	Configuration Management
	Disabled Library Link Management
	Model Dependencies Tools

	Embedded Software Design
	Legacy Code Tool Enhancement

	Block Enhancements
	Product Block Reorders Inputs Internally
	Block Data Tips Now Work on All Platforms
	Enhanced Data Type Support for Blocks
	New Simulink Data Class Block Object Properties
	New Break Link Options for save_system Command
	Simulink Software Checks Data Type of the Initial Condition Sign

	Usability Enhancements
	Model Advisor
	Alignment Commands

	S-Functions
	New S-Function APIs to Support Singleton Dimension Handling
	New Level-2 M-File S-Function Example

	Version 6.6.1 (R2007a+) Simulink Software
	Version 6.6 (R2007a) Simulink Software
	Multidimensional Signals
	Multidimensional Signals in Simulink Blocks
	Multidimensional Signals in S-Functions
	Multidimensional Signals in Level-2 M-File S-Functions

	New Block Parameters
	GNU Compiler Upgrade
	Compatibility Considerations

	Changes to Concatenate Block
	Changes to Assignment Block
	Changes to Selector Block
	Improved Model Advisor Navigation and Display
	Change to Simulink.ModelAdvisor.getModelAdvisor Method
	Compatibility Considerations

	New Simulink Blocks
	Change to Level-2 MATLAB S-Function Block
	Model Dependency Analysis
	Model File Monitoring
	Legacy Code Tool Enhancements
	Compatibility Considerations

	Continuous State Names
	Changes to Embedded MATLAB Function Block
	New Function Checks M-Code for Compliance with Embedded MATLAB S
	Support for Multidimensional Arrays
	Support for Function Handles
	Enhanced Support for Frames
	New Embedded MATLAB Runtime Library Functions
	Using & and | Operators in Embedded MATLAB Function Blocks
	Calling get Function from Embedded MATLAB Function Blocks
	Documentation on Embedded MATLAB Subset has Moved

	Referenced Models Support Non-Zero Start Time
	New Functions Copy a Model to a Subsystem or Subsystem to Model
	New Functions Empty a Model or Subsystem
	Default for Signal Resolution Parameter Has Changed
	Compatibility Considerations

	Referencing Configuration Sets
	Compatibility Considerations

	New Block, Model Advisor Check, and Utility Function for Bus to
	Enhanced Support for Tunable Parameters in Expressions
	New Loss of Tunability Diagnostic
	Port Parameter Evaluation Has Changed
	Compatibility Considerations

	Data Type Objects Can Be Passed Via Mask Parameters
	Expanded Options for Displaying Subsystem Port Labels
	Model Explorer Customization Option Displays Properties of Selec
	Change to PaperPositionMode Parameter
	Compatibility Considerations

	New Simulink.Bus.objectToCell Function
	Simulink.Bus.save Function Enhanced To Allow Suppression of Bus
	Change in Version 6.5 (R2006b) Introduced Incompatibility
	Nonverbose Output During Code Generation
	SimulationMode Removed From Configuration Set
	Compatibility Considerations

	Version 6.5 (R2006b) Simulink Software
	Model Dependency Viewer
	Enhanced Lookup Table Blocks
	Compatibility Considerations

	Legacy Code Tool
	Simulink Software Now Uses Internal MATLAB Functions for Math Op
	Enhanced Integer Support in Math Function Block
	Configuration Set Updates
	Command to Initiate Data Logging During Simulation
	Commands for Obtaining Model and Subsystem Checksums
	Sample Hit Time Adjusting Diagnostic
	Function-Call Models Can Now Run Without Being Referenced
	Signal Builder Supports Printing of Signal Groups
	Method for Comparing Simulink Data Objects
	Unified Font Preferences Dialog Box
	Limitation on Number of Referenced Models Eliminated for Single
	Parameter Objects Can Now Be Used to Specify Model Configuration
	Compatibility Considerations

	Parameter Pooling Is Now Always Enabled
	Compatibility Considerations

	Attempting to Reference a Symbol in an Uninitialized Mask Worksp
	Compatibility Considerations

	Changes to Integrator Block's Level Reset Options
	Compatibility Considerations

	Embedded MATLAB Function Block Features and Changes
	Support for Structures
	Embedded MATLAB Editor Analyzes Code with M-Lint
	New Embedded MATLAB Runtime Library Functions
	New Requirement for Calling MATLAB Functions from Embedded MATLA
	Type and Size Mismatch of Values Returned from MATLAB Functions
	Embedded MATLAB Function Blocks Cannot Output Character Data

	Version 6.4.1 (R2006a+) Simulink Software
	Version 6.4 (R2006a) Simulink Software
	Signal Object Initialization
	Icon Shape Property for Logical Operator Block
	Data Type Property of Parameter Objects Now Settable
	Range-Checking for Parameter and Signal Object Values
	Compatibility Considerations

	Expanded Menu Customization
	Bringing the MATLAB Desktop Forward
	Converting Atomic Subsystems to Model References
	Concatenate Block
	Compatibility Considerations

	Model Advisor Changes
	Model Advisor Tasks Introduced
	Model Advisor API

	Built-in Block's Initial Appearance Reflects Parameter Settings
	Compatibility Considerations

	Double-Click Model Block to Open Referenced Model
	Signal Logs Reflect Bus Hierarchy
	Tiled Printing
	Solver Diagnostic Controls
	Diagnostic Added for Multitasking Conditionally Executed Subsyst
	Embedded MATLAB Function Block Features and Changes
	Option to Disable Saturation on Integer Overflow
	Nontunable Option Allows Use of Parameters in Constant Expressio
	Enhanced Support for Fixed-Point Arithmetic
	Support for Integer Division
	New Embedded MATLAB Runtime Library Functions
	Setting FIMATH Cast Before Sum to False No Longer Supported in E
	Type Mismatch of Scalar Output Data in Embedded MATLAB Function
	Implicit Parameter Type Conversions No Longer Supported in Embed
	Fixed-Point Parameters Not Supported
	Embedded MATLAB Function Blocks Require C Compiler for Windows 6

	Version 6.3 (R14SP3) Simulink Software
	Model Referencing
	New Features and Changes

	Block Enhancements
	Variable Transport Delay, Variable Time Delay Blocks
	Additional Reset Trigger for Discrete-Time Integrator Block
	Input Port Latching Enhancements
	Improved Function-Call Inputs Warning Label

	Modeling Enhancements
	Annotations
	Custom Signal Viewers and Generators
	Model Explorer Search Option
	Using Signal Objects to Assign Signal Properties
	Bus Utility Functions
	Fixed-Point Support in Embedded MATLAB Function Blocks
	Embedded MATLAB Function Editor
	Input Trigger and Function-Call Output Support in Embedded MATLA
	Find Options Added to the Data Object Wizard

	Simulation Enhancements
	Viewing Logged Signal Data
	Importing Time-Series Data
	Using a Variable-Step Solver with Rate Transition Blocks
	Additional Diagnostics
	Data Integrity Diagnostics Pane Renamed, Reorganized
	Improved Sample-Time Independence Error Messages

	User Interface Enhancements
	Model Viewing
	Customizing the Simulink User Interface

	MEX-Files on Windows Systems
	Compatibility Considerations

	Fixed-Point Functions No Longer Supported for Use in Signal Obje
	Compatibility Considerations

	Parameter Object Expressions No Longer Supported in Dialog Boxes
	Compatibility Considerations

	MEX-File Extension Changed
	Compatibility Considerations

	Version 6.2 (R14SP2) Simulink Software
	Multiple Signals on Single Set of Axes
	Logging Signals to the MATLAB Workspace
	Legends that Identify Signal Traces
	Displaying Tic Labels
	Opening Parameters Dialog Box
	Rootlevel Input Ports
	Compatibility Considerations

	Version 6.1 (R14SP1) Simulink Software
	Changed Source Dialog Box Behavior
	Changed Model Explorer Source Behavior
	Affected Blocks
	Model Load Warnings
	Compatibility Considerations

	Version 6.0 (R14) Simulink Software
	Model Explorer
	Configuration Sets
	Configuration Parameters Dialog Box

	Model Referencing
	Model Workspaces
	Implicit Fixed-Step Solver
	The Signal and Scope Manager
	Data Object Type Enhancements
	Block Enhancements
	New Blocks
	Fixed-Point-Capable Blocks
	Port Values Display
	User-Specifiable Sample Times
	Improved Initial Output Handling
	Bus-Capable Nonvirtual Blocks
	Duplicate Input Ports
	Inport/Outport Block Display Options
	Zero- and One-Based Indexing
	Runtime Block API
	Command-Line API to Signal Builder Block

	Signal Enhancements
	Test Point Indicators
	Signal Logging
	Internal Signal Structures Revamped
	Edit-Time Signal Label Propagation
	Bus Editor

	Rate Transition Enhancements
	Rate Transition Block Determines Transition Type Automatically
	Automatic Insertion of Rate Transition Blocks
	User-Specifiable Output Sample Time

	Execution Context Enhancements
	Enabling Execution Context Propagation
	Execution Context Indicator

	Algebraic Loop Minimization
	Level-2 M-File S-Functions
	Panning Model Diagrams
	MATLAB Data Type Conversions
	Compatibility Considerations

	Signal Object Resolution Changes
	Compatibility Considerations

	Loading Models Containing Non-ASCII Characters
	Compatibility Considerations

	Change in Sample Time Behavior of Unary Minus Block
	Compatibility Considerations

	Initial Output of Conditionally Executed Subsystems
	Compatibility Considerations

	Execution Context Default Changes
	Compatibility Considerations

	Simulink Accelerator Switch Blocks Can Abort Code Generation

	Version 5.1 (R13SP1) Simulink Software
	Sample Time Parameters Exposed
	Enhanced Debugger
	Enhanced Debugger Commands
	New Debugger Commands
	Enhanced Debugger Toolbar
	Simulation Loop Pane
	Sorted List Pane

	Context-Sensitive Data Typing of Tunable Parameters
	Change in Simulink Behavior

	Conditional Execution Behavior
	Function-Call Subsystem Enhancements
	External Increment Option Added To For Iterator Block
	Performance Improvements

	Version 5.0.1 (R13.0.1) Simulink Software
	Tunable Parameters for Unified Fixed-Point Blocks
	Compatibility Considerations

	Version 5.0 (R13) Simulink Software
	Block Enhancements
	Fixed-Point Block Library
	Lookup Table Editor
	Model Verification Block Library
	Signal Builder Block
	DocBlock
	Rate Transition Block
	Block Library Reorganization
	Model Linearization Blocks
	Data Store Read/Write Block Navigation
	Enhanced S-Function Builder
	Miscellaneous Block Enhancements
	Block Data Type Table

	Simulation Enhancements
	Invalid Loop Highlighting
	Algebraic Loop Highlighting
	Conditional Execution Behavior
	Reorganized Simulation Diagnostics
	Enhanced Diagnostic Viewer

	Modeling Enhancements
	Enhanced Mask Editor
	Including Symbols and Greek Letters in Block Diagrams
	Production Hardware Characteristics
	True Color Support
	Print Details
	Boolean Logic Signals
	Model Discretizer

	Platform Limitations for HP and IBM

	Version 4.1 (R12+) Simulink Software
	Simulink Editor
	Undo Move
	Undo Subsystem Creation
	Autoconnecting Blocks
	Autorouting Signal Lines
	Displaying Storage Class on Lines
	Save Models in Release 11 Format

	Modeling Enhancements
	Autorouting Option Added to add_line Command
	S-Function Builder
	add_param, delete_param
	Connection Callbacks
	Saving Block User Data in Model Files
	Absolute Tolerance Enhancements
	Block Reduction Enhancements
	Boolean Logic Signals Preference
	Subsystem Semantics Demos
	Enhanced Engine Model Demos
	Setting Block Sorting Priority on Virtual Subsystems
	Using ~ in Filenames on UNIX
	Improved Warning About Slow Signals Feeding the Enable Port of a
	Flagging Function-Call Subsystem Cycles

	Simulink Debugger
	Enhancement to Sorted List Display
	Improved Messages in Accelerated Mode
	Breakpoints on a Function-Call Subsystem
	Displaying and Probing Virtual Blocks
	Stepping Stateflow Charts

	Block Library
	Unified Pulse Generator
	Control Flow Blocks
	Bus Creator
	Sine Wave Block Enhancements
	Enhanced Flip-Flop Blocks
	Additional Data Type Support
	Simulink Block Library Reorganization
	Scope Enhancements
	S-Functions Sorted Like Built-In Blocks

	Triggered Subsystems
	Added Latched Triggered Subsystems
	Self-Triggering Subsystems Are No Longer Allowed

	Running Simulink 4.1 Models in Simulink 4.0 Software
	Compatibility Considerations

	Direct Feedthrough Compensation Deprecated
	Compatibility Considerations

	Improved Invalid Model Configuration Diagnostics
	Compatibility Considerations

	Bug Fixes
	Variable sample time S-functions
	Bus selector detection of duplicated names
	Optimize block memory use
	Miscellaneous fixes to the model loader
	Profiler fixes
	Chirp block fix
	Function-call subsystem bug fixes
	Sorting bug fix
	Fixed handling of grounded/unconnected inputs feeding certain bl

	Version 4.0 (R12) Simulink Software
	Simulink Editor
	Preferences
	Text Alignment
	UNIX Context Menus
	Library Link Enhancements
	Find Dialog Box
	Model Browser
	Single Window Mode
	Keyboard Navigation
	Enhanced Library Browser
	Help Menus

	Modeling Enhancements
	Hierarchical Variable Scoping
	Matrix Signals
	Simulink Data Objects
	Block Execution Order

	Simulink Debugger
	GUI Debugger Interface

	Block Library
	Product Block
	Gain Block
	Math Function Block
	Reshape Block
	Multiplexing Matrix Signals
	Function Call Iteration Parameter
	Probing Signal Dimensionality
	Configurable Subsystem
	Look-Up Table Blocks
	Polynomial Block
	Signal Specification
	ADA S-Functions
	Bitwise Logical Operator Block
	Atomic Subsystems

	SB2SL
	SB2SL Extends Code Generation Support

	Port Name Property
	Compatibility Considerations

	Compatibility and Limitations Summary for Simulink Software

